





# MONITORING YEAR 2 ANNUAL REPORT Final

#### **MARTIN DAIRY MITIGATION SITE**

Orange County, NC NCDEQ Contract No. 006831 DMS Project Number 97087 USACE Action ID Number 2016-00874 NCDWR Project Number 2016-0366

Data Collection Period: March - October 2019 Draft Submission Date: October 21, 2019 Final Submission Date: December 17, 2019

#### **PREPARED FOR:**



NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652 
 Mittigation Project Name
 Martin Dairy Mitigation Site - Option 2
 County
 Orange
 USACE Action ID
 2016-01702

 DMS ID
 97087
 Date Project Instituted
 3/22/2016
 NCDWR Permit No
 2016-0366

River Basin Neuse
Cataloging Unit 03020201

|                                     |                       |           | Strea | m Credits |                             | Wetland Credits        |                       |                      |                           |              |                       |         |                             |            |
|-------------------------------------|-----------------------|-----------|-------|-----------|-----------------------------|------------------------|-----------------------|----------------------|---------------------------|--------------|-----------------------|---------|-----------------------------|------------|
| Credit Release Milestone            | Scheduled<br>Releases | Warm      | Cool  | Cold      | Anticipated<br>Release Year | Actual<br>Release Date | Scheduled<br>Releases | Riparian<br>Riverine | Riparian Non-<br>riverine | Non-riparian | Scheduled<br>Releases | Coastal | Anticipated<br>Release Year | Actual     |
| Potential Credits (Mitigation Plan) | (Stream)              | 2,135.000 |       |           | (Stream)                    | (Stream)               | (Forested)            |                      |                           |              | (Coastal)             |         | (Wetland)                   | (Wetland)  |
| Potential Credits (As-Built Survey) | (Otream)              | 2,135.000 |       |           | (Otream)                    | (Otream)               | (i orestea)           |                      |                           |              | (GodStai)             |         | (Wettunu)                   | (Wetturia) |
| 1 (Site Establishment)              | N/A                   |           |       |           | N/A                         | N/A                    | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| 2 (Year 0 / As-Built)               | 30%                   | 640.500   |       |           | 2018                        | 3/12/2018              | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| 3 (Year 1 Monitoring)               | 10%                   | 213.500   |       |           | 2019                        | 4/26/2019              | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| 4 (Year 2 Monitoring)               | 10%                   |           |       |           | 2020                        |                        | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| 5 (Year 3 Monitoring)               | 10%                   |           |       |           | 2021                        |                        | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| 6 (Year 4 Monitoring)               | 5%                    |           |       |           | 2022                        |                        | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| 7 (Year 5 Monitoring)               | 10%                   |           |       |           | 2023                        |                        | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| 8 (Year 6 Monitoring)               | 5%                    |           |       |           | 2024                        |                        | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| 9 (Year 7 Monitoring)               | 10%                   |           |       |           | 2025                        |                        | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| Stream Bankfull Standard            | 10%                   |           |       |           |                             |                        | N/A                   |                      |                           |              | N/A                   |         |                             |            |
| Total Credits Released to Date      |                       | 854 000   | · ·   |           |                             |                        |                       |                      |                           |              |                       | , i     |                             |            |

Date Prepared

7/15/2019

| NO. | res. |
|-----|------|
| 110 |      |

|  |  | IES: |
|--|--|------|
|  |  |      |
|  |  |      |

Signature of Wilmington District Official Oproving Credit Release

27 Sept 2019

Date

- 1 For NCDMS, no credits are released during the first milestone
- 2 For NCDMS projects, the second credit release milestone occurs automatically when the as-built report (baseline monitoring report) has been made available to the NCIRT by posting it to the NCDMS Portal, provided the following criteria have been met:
  - 1) Approval of the final Mitigation Plan
  - 2) Recordation of the preservation mechanism, as well as a title opinion acceptable to the USACE covering the property
  - 3) Completion of all physical and biological improvements to the mitigation site pursuant to the mitigation plan
  - 4) Reciept of necessary DA permit authorization or written DA approval for porjects where DA permit issuance is not required
- 3 A 10% reserve of credits is to be held back until the bankfull event performance standard has been met

Martin Dairy Mitigation Site - Option 2 97087 County Date Project Instituted Date Prepared USACE Action ID NCDWR Permit No Mitigation Project Name DMS ID Orange 3/22/2016 2016-01702 2016-0366

River Basin 7/15/2019 Neuse Cataloging Unit 03020201

DEBITS (released credits only)

| Ratios                                                                          | 1                     | 1.5                    | 2.5                      | 5                      | 1                       | 3                    | 2                       | 5                        | 1                          | 3                       | 2                          | 5                           | 1                            | 3                         | 2                            | 5                             |
|---------------------------------------------------------------------------------|-----------------------|------------------------|--------------------------|------------------------|-------------------------|----------------------|-------------------------|--------------------------|----------------------------|-------------------------|----------------------------|-----------------------------|------------------------------|---------------------------|------------------------------|-------------------------------|
|                                                                                 | Stream<br>Restoration | Stream<br>Enhancment I | Stream<br>Enhancement II | Stream<br>Preservation | Riparian<br>Restoration | Riparian<br>Creation | Riparian<br>Enhancement | Riparian<br>Preservation | Nonriparian<br>Restoration | Nonriparian<br>Creation | Nonriparian<br>Enhancement | Nonriparian<br>Preservation | Coastal Marsh<br>Restoration | Coastal Marsh<br>Creation | Coastal Marsh<br>Enhancement | Coastal Marsh<br>Preservation |
| As-Built Amounts (feet and acres)                                               | 2,135.000             |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| As-Built Amounts (mitigation credits)                                           | 2,135.000             |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| Percentage Released                                                             | 40%                   |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| Released Amounts (feet / acres)                                                 | 854.000               |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| Released Amounts (credits)                                                      | 854.000               |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| NCDWR Permit USACE Action ID Project Name                                       |                       |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| NCDOT TIP R-2547 / R-2641 - Knightdale Bypass, Wake 2001-1689 2002-20819 County | 411.910               |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| 2000-20343 to 2000-<br>20346 Heritage SD (Donation Debit)                       | 228.590               |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| 2006-1617 2006-20100-292 Wendell Falls                                          | 168.980               |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
|                                                                                 |                       |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
|                                                                                 |                       |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| Remaining Amounts (feet / acres)                                                | 44.520                |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |
| Remaining Amounts (credits)                                                     | 44.520                |                        |                          |                        |                         |                      |                         |                          |                            |                         |                            |                             |                              |                           |                              |                               |



December 17, 2019

Jeremiah Dow N.C. Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

RE: Monitoring Year 2 Report Martin Dairy Mitigation Site, DMS ID# 97087

Neuse River Basin – CU# 03020201 Orange County, North Carolina Contract No. 6831

Dear Mr. Dow,

We have reviewed the comments on the Monitoring Year 2 Report for the above referenced project dated December 12, 2019 and have revised the report based on these comments. The revised documents are submitted with this letter. Below are responses to each of your comments. For your convenience, the comments are reprinted with our response in italics.

#### **MY2 Report – Stream Mitigation**

1. Section 1, 2nd paragraph: In the 8th sentence the date should be changed from "January 2017" to "January 2018."

The date had now been changed to January 2018.

2. Section 1.2.2 – Concern regarding stem survival along parts of UT1 was discussed during the site visit on 11/21. We recommend a sentence briefly detailing vegetation observations on UT1, and what action was taken in MY2 or may be considered in the future.

A few sentences have been added discussing the stem survival along UT1.

3. Appendix 3, Table 9 – Vegetation Plot 7 planted stem density should be colored red as it is not on track to meet the interim success criteria for MY3 of 320 planted stems per acre.

Vegetation Plot 7 has now been updated to red in Table 9.

#### **MY2 Report – Riparian Buffer Mitigation**

1. See comment 2 above. Please consider adding a brief discussion where appropriate.

A section has been added discussing the stem survival along UT1.



#### **Overall**

1. As required by contract, specifically RFP#16-006477, Wildlands must submit an updated Monitoring Phase Performance Bond (MPPB) for Monitoring Year 3 (Task 9) to Jeff Jurek for his approval before DMS approves this deliverable and the associated payment.

A draft Monitoring Phase Performance Bond will be submitted.

If you have any questions, please contact me by phone (919) 851-9986, or by email (jlorch@wildlandseng.com).

Sincerely,

**Jason Lorch**, Monitoring Coordinator

#### **PREPARED BY:**



312 West Millbrook Road, Suite 225 Raleigh, NC 27609

### **Jason Lorch**

jlorch@wildlandseng.com Phone: 919.851.9986

#### **EXECUTIVE SUMMARY**

Wildlands Engineering, Inc. (Wildlands) implemented a full delivery project at the Martin Dairy Mitigation Project (Site) for the North Carolina Department of Environmental Quality Division of Mitigation Services (DMS) to restore a total of 2,135 linear feet (LF) of perennial streams in Orange County, NC. The Site is expected to generate 2,135 stream mitigation units (SMUs). All stream lengths were measured along the stream centerline for SMU calculations. The Site is located approximately eight miles northeast of Hillsborough, NC and eight miles south of Caldwell, NC (Figure 1) in the Neuse River Basin 8-Digit Hydrologic Unit Code (HUC) 03020201. The project is located within a DMS targeted watershed for the Neuse River Basin Hydrologic Unit Code (HUC) 03020201030030 and NC Division of Water Resources (DWR) Subbasin 03-04-01. There are two unnamed tributaries on the Site, Martin Dairy Creek and UT1. The downstream drainage area of the Site is 526 acres. The Site drains to the Eno River which flows to Falls Lake and is classified as water supply waters (WS-IV). The 11.155-acre site is protected with a permanent conservation easement.

The Site is located within the Neuse River Targeted Local Watershed (TLW) as presented in the 2010 Neuse River Basin Restoration Priorities (RBRP) (Breeding, 2010), which highlights the importance of riparian buffers for stream restoration projects. The Site was an active dairy farm until 2014 when livestock were removed, and the Site land use became hay cultivation.

The project goals established in the mitigation plan (Wildlands, 2017) were developed considering the goals and objectives listed in the Neuse River RBRP plan. The project goals include:

- Reconnect channels with floodplains and riparian wetlands to allow a natural flooding regime;
- Improve the stability of stream channels;
- Restore and enhance native floodplain and streambank vegetation;
- Improve instream habitat; and
- Permanently protect the Site from harmful land uses.

The project will contribute to achieving the goals for the watershed listed in the Neuse River RBRP and provide ecological benefits within the Neuse River Basin. While benefits such as habitat improvement and geomorphic stability are limited to the Site, reduced nutrient and sediment loading have farther reaching effects. In addition, planned projects in the same watershed and basin as this Site will realize cumulative benefits.

The Site construction and as-built surveys were completed between July 2017 and January 2018. Monitoring Year 2 (MY2) assessments and site visits were completed between May and September 2019 to assess the conditions of the project. Overall, the Site has met the required vegetation and stream success criteria for MY2. The overall average stem density for the Site is 405 stems per acre and is therefore on track to meet the MY3 interim requirement of 320 stems per acre. A significant die-off occurred in Vegetation Plot 7 causing the plot to not meet the MY3 interim requirement of 320 stems per acre; however, it is still above the MY7 final success criteria of 210 stems per acre. All restored streams are stable and functioning as designed. Hydrologic monitoring stations with crest gages and pressure transducers were installed on the Site to document bankfull events on the restoration reaches. Bankfull and geomorphically significant events were recorded on each restoration reach during the 2019 annual monitoring period. Since the Site also achieved these events during the 2018 annual monitoring period, the stream hydrology success criteria for bankfull events have been met.

i

#### **MARTIN DAIRY MITIGATION SITE**

Monitoring Year 2 Annual Report

Section 1: PROJECT OVERVIEW......1-1

Project Goals and Objectives ......1-1

| TAB |  |  |  |
|-----|--|--|--|
|     |  |  |  |

1.1

| 1.2 Monitoring       | Year 2 Data Assessment1-2                                                 |
|----------------------|---------------------------------------------------------------------------|
| 1.2.1 Vegeta         | ative Assessment1-2                                                       |
| 1.2.2 Vegeta         | ation Areas of Concern1-3                                                 |
| 1.2.3 Stream         | n Assessment1-3                                                           |
| 1.2.4 Strean         | n Areas of Concern1-3                                                     |
| 1.2.5 Hydro          | ogy Assessment1-3                                                         |
| 1.2.6 Mainte         | enance Plan1-3                                                            |
| 1.3 Monitoring       | Year 2 Summary1-4                                                         |
| Section 2: METHODO   | DLOGY2-1                                                                  |
| Section 3: REFERENCE | ES3-1                                                                     |
| APPENDICES           |                                                                           |
| Appendix 1           | General Figures and Tables                                                |
| Figure 1             | Project Vicinity Map                                                      |
| Figure 2             | Project Component/Asset Map                                               |
| Table 1              | Project Components and Mitigation Credits                                 |
| Table 2              | Project Activity and Reporting History                                    |
| Table 3              | Project Contact Table                                                     |
| Table 4              | Project Information and Attributes                                        |
| Appendix 2           | Visual Assessment Data                                                    |
| Figure 3             | Integrated Current Condition Plan View                                    |
| Table 5a-c           | Visual Stream Morphology Stability Assessment Table                       |
| Table 6              | Vegetation Condition Assessment Table                                     |
|                      | Stream Photographs                                                        |
|                      | Vegetation Photographs                                                    |
| Appendix 3           | Vegetation Plot Data                                                      |
| Table 7              | Vegetation Plot Criteria Attainment Table                                 |
| Table 8              | CVS Vegetation Tables - Metadata                                          |
| Table 9              | Planted and Total Stem Counts                                             |
| Appendix 4           | Morphological Summary Data and Plots                                      |
| Table 10a-b          | Baseline Stream Data Summary                                              |
| Table 11             | Morphology and Hydraulic Summary (Dimensional Parameters – Cross-Section) |
| Table 12a-c          | Monitoring Data – Stream Reach Data Summary                               |
|                      | Cross-Section Plots                                                       |
|                      | Reachwide and Cross-Section Pebble Count Plots                            |
| Appendix 5           | Hydrology Summary Data                                                    |
| Table 13             | Verification of Bankfull Events                                           |
|                      | Monthly Rainfall Data                                                     |



#### Section 1: PROJECT OVERVIEW

The Martin Dairy Mitigation Site (Site) is located in central Orange County, approximately eight miles northeast of Hillsborough, NC and eight miles south of Caldwell, NC off of Schley Rd (Figure 1). The Site is located in the Neuse River Basin and within the Falls Lake Water Supply Watershed, which has been designated a Nutrient Sensitive Water. The project streams drain to the Eno River and eventually to the Falls Lake Reservoir. The Site is within Hydrologic Unit Code (HUC) 03020201030030, which is a Targeted Local Watershed (TLW) (Figure 1) as identified in the 2010 Neuse River Basin Restoration Priorities (RBRP) (Breeding, 2010). The Site is in in the Carolina Slate Belt of the Piedmont Physiographic Province (USGS, 1998). The project watershed consists primarily of agricultural and wooded land and the drainage area for project site is 526 acres (0.82 square miles).

The project streams consist of Martin Dairy Creek and one unnamed tributary. Stream restoration reaches included Reaches 1 and 2 of Martin Dairy Creek and UT1. Mitigation work within the Site included restoration of 2,135 linear feet (LF) of perennial stream channels. The riparian areas were planted with native vegetation to improve habitat and protect water quality. The final mitigation plan (Wildlands, 2017) was submitted to and accepted by the DMS in March 2017. Construction activities were completed by Land Mechanic Designs, Inc. in July 2017. Planting and seeding activities were completed by Bruton Natural Systems, Inc. in December 2017. Baseline monitoring (MY0) was conducted between August 2017 and January 2018. Monitoring Year 1 was conducted in 2018. Annual monitoring will occur for seven years with the close-out anticipated to occur in 2025 given the success criteria are met. Appendix 1 provides additional details on project activity, history, contact information, and watershed/background information for the Site.

The Site is located on two tracts under the ownership of Ted H. Martin (PIN 9896-83-0483 & 9896-83-9111). A conservation easement was recorded on 11.155 acres (Deed Book 6218, Pages 270 - 289). The project is expected to provide 2,135 stream mitigation units (SMUs) by closeout.

A project vicinity map and directions are provided in Figure 1 and project components/assets are illustrated in Figure 2.

#### 1.1 Project Goals and Objectives

Prior to construction activities, the primary degradation at the Site was the clearing of vegetation and channelization of Martin Dairy Creek and UT1. Channelization, as indicated by dredge spoil in the floodplain, involved straightening and deepening of the stream. Livestock grazing on the Site further contributed to degradation of the riparian corridor and stream channel. Table 4 in Appendix 1 and Tables 10a and 10b in Appendix 4 present the pre-restoration conditions in detail.

The project is intended to provide numerous ecological benefits within the Neuse River Basin. While benefits such as habitat improvement and geomorphic stability are limited to the project site, reduced nutrient and sediment loading have farther reaching effects. The table below, describes expected outcomes to water quality and ecological processes are provided with project goals and objectives. The project goals and objectives were developed as part of the mitigation plan considering the goals and objectives listed in the Neuse River RBRP plan and strive to maximize ecological and water quality uplift within the watershed.

The following project goals and related objectives established in the Mitigation Plan (Wildlands, 2017) include:

| Goal                                                                                                                                                                            | Objective                                                                                                                                                                        | Expected Outcomes                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reconnect channels with floodplains and riparian wetlands to allow a natural flooding regime.                                                                                   | Reconstruct stream channels with designed bankfull dimensions and depth based on reference reach data. Remove existing dredge spoil to reconnect channel with adjacent wetlands. | Raise water table and hydrate riparian wetlands. Allow more frequent flood flows to disperse on the floodplain. Support geomorphology and higher level functions.                                                     |
| Improve the stability of stream channels.                                                                                                                                       | Construct stream channels that will maintain stable cross-sections, patterns, and profiles over time.                                                                            | Reduce sediment inputs from bank erosion. Reduce shear stress on channel boundary. Support all stream functions above hydrology.                                                                                      |
| Restore and enhance native floodplain and streambank vegetation.                                                                                                                | Plant native tree and understory species in riparian zones and plant native shrub and herbaceous species on streambanks.                                                         | Reduce sediment inputs from bank erosion and runoff. Increase nutrient cycling and storage in floodplain. Provide riparian habitat. Add a source of LWD and organic material to stream. Support all stream functions. |
| Install habitat features such as constructed riffles, lunker logs, and brush toes into restored streams. Add woody materials to channel beds. Construct pools of varying depth. |                                                                                                                                                                                  | Increase and diversify available habitats for macroinvertebrates, fish, and amphibians leading to colonization and increase in biodiversity over time. Add complexity including LWD to the streams.                   |
| Permanently protect the Site from harmful uses.                                                                                                                                 | Establish a conservation easement on the Site.                                                                                                                                   | Protect the Site from encroachment on the riparian corridor and direct impact to streams and wetlands. Support all stream functions.                                                                                  |

#### 1.2 Monitoring Year 2 Data Assessment

Annual monitoring and site visits were conducted during MY2 to assess the condition of the project. The vegetation and stream success criteria for the Site follow the approved success criteria presented in the mitigation plan.

#### 1.2.1 Vegetative Assessment

Planted woody vegetation is being monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008). A total of eight standard 10-meter by 10-meter vegetation plots were established during the baseline monitoring within the project easement area.

The final vegetative success criteria is the survival of 210 planted stems per acre at the end of the seven-year monitoring period (MY7). The interim measure of vegetative success is the survival of at least 320 planted stems per acre at the end of year three of the monitoring period (MY3) and at least 260 stems per acre at the end of the fifth year of monitoring (MY5). Planted vegetation must average 10 feet in height at the end of MY7.

The MY2 vegetative survey was completed in September 2019. The 2019 vegetation monitoring resulted in an average stem density of 405 stems per acre, which is well above the interim requirement of 320 stems per acre required at MY3 and 32% less than the baseline density recorded (597 stems per acre). There is an average of 10 stems per plot in MY2 compared to 14 stems per plot in MY0. With 283 planted stems per acre, Vegetation Plot 7 is not on track to meet the interim requirement of 320 stems per acre but it is still above the final vegetative success criteria of 210 planted stems per acre. The reason for Vegetation Plot 7's tree mortality is that Alligator weed (*Alternanthera philoxeroides*) has formed a thick herbaceous understory that has out competed the planted trees. However, several volunteer species including green ash (*Fraxinus pennsylvanica*) and buttonbush (*Cephalanthus occidentalis*) were recorded in the plot, increasing the total stems per acre to 405. Thus, all eight of the plots are on track to meet the success criteria required for MY7. Refer to Appendix 2 for vegetation plot photographs and the vegetation condition assessment table and Appendix 3 for vegetation data tables.

#### 1.2.2 Vegetation Areas of Concern

Vegetation Plot 7 had a higher planted tree mortality rate than the rest of the vegetation plots on Site due to competition from Alligator weed. Even with a dense herbaceous layer, volunteers are surviving, increasing the stems per acres to 405. Due to the success of the volunteer trees, remedial action will not be taken in MY3 but monitoring will continue to assess tree mortality rates.

Tree vigor along UT1 was good but is not performing as well as the rest of the Site. This is likely due to floodplain grading during construction. Approximately 100 pounds of biochar, rock phosphate, azomite, and humic acid was added to the floodplain to promote tree growth during MY2. Remedial action will be taken as necessary in subsequent monitoring years to promote tree growth.

#### 1.2.3 Stream Assessment

Morphological surveys for MY2 were conducted in May 2019. All streams within the Site are stable and functioning as designed. In general, cross-sections at the Site show little to no change in the bankfull area, maximum depth ratio, or width-to-depth ratio. Bank height ratios are less than 1.1. Substrate materials indicate the maintenance of coarser materials in the riffle reaches and finer particles in the pools. Longitudinal profile surveys are not required on the project unless visual inspection indicates reach wide vertical instability. Refer to Appendix 2 for the visual stability assessment table, Current Condition Plan View (CCPV) map, and stream photographs. Refer to Appendix 4 for the morphological data and plots.

#### 1.2.4 Stream Areas of Concern

No stream areas of concern were identified during MY2.

#### 1.2.5 Hydrology Assessment

At the end of the seven-year monitoring period, two or more bankfull events must have occurred in separate years within the restoration reaches. Also, two geomorphically significant events must be documented during the monitoring period. Bankfull events and multiple geomorphically significant events were recorded on all restoration reaches during MY1 and MY2, resulting in attainment of the stream hydrology success criteria. Refer to Appendix 5 for hydrologic data.

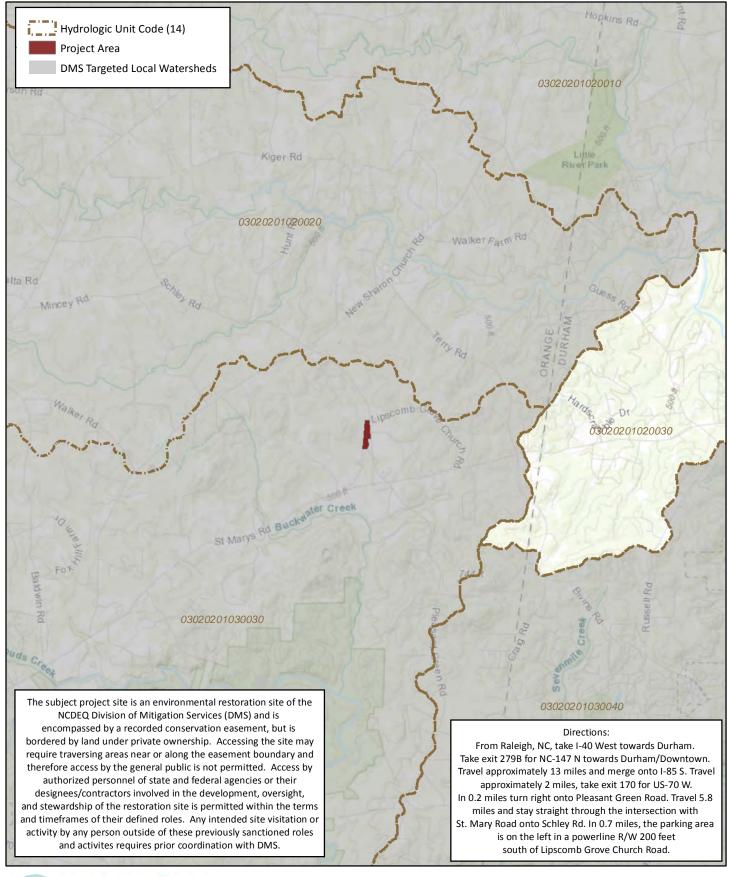
#### 1.2.6 Maintenance Plan

No maintenance plan is necessary at this time.

#### 1.3 Monitoring Year 2 Summary

Seven of the eight vegetation plots are on track to meet the MY3 interim requirement of 320 planted stems per acre. Vegetation Plot 7 had significant tree mortality due to competition from alligator weed but is still above the final success requirement of 210 planted stems per acre. When counting volunteer trees, vegetation plot 7 is above the MY3 interim requirement. All streams within the Site are stable and functioning as designed. Bankfull and geomorphically significant events during two separate years have been documented on all stream reaches, resulting in fulfillment of the stream hydrology success criteria.

Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Mitigation Plan available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.


### Section 2: METHODOLOGY

Geomorphic data was collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All Integrated Current Condition Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Crest gages and pressure transducers were installed in riffle cross-sections and monitored throughout the year. Hydrologic monitoring instrument installation and monitoring methods are in accordance with the United States Army Corps of Engineers standards (USACE, 2003). Vegetation monitoring protocols followed the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008).

#### Section 3: REFERENCES

- Breeding, R. 2010. Neuse River Basin Restoration Priorities 2010. NCEEP, NC
- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, C.C., Rawlins, C.L., Potyondy, J.P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique*. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, M.T., Peet, R.K., S.D., Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-5.pdf.
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Rosgen, D.L. 1997. A Geomorphological Approach to Restoration of Incised Rivers. Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. Center For Computational Hydroscience and Bioengineering, Oxford Campus, University of Mississippi, Pages 12-22.
- United States Army Corps of Engineers. 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Geological Survey. 1998. North Carolina Geology. http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Wildlands Engineering, Inc. 2018. Martin Dairy Mitigation Site Baseline Monitoring Document and As-Built Baseline Report. DMS, Raleigh, NC.
- Wildlands Engineering, Inc. 2017. Martin Diary Mitigation Project Mitigation Plan. DMS, Raleigh, NC.









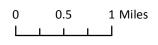
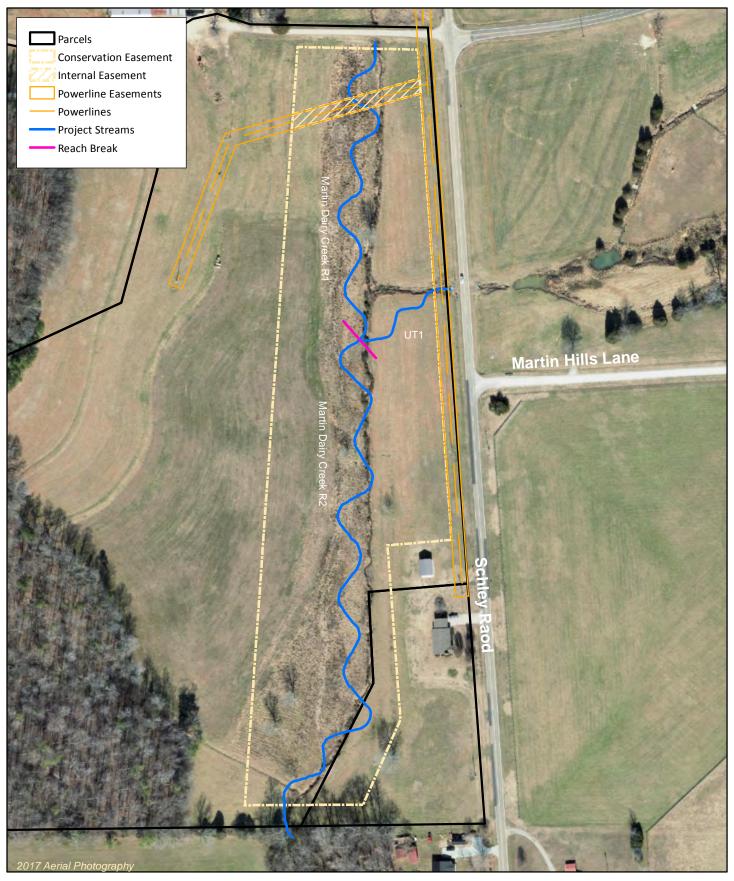






Figure 1. Project Vicinity Map Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019





0 100 200 Feet

Figure 2. Project Component/Asset Map Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019 Orange County, NC

Table 1. Project Components and Mitigation Credits Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019

| www.mituring real 2 - 2019 |          |                                     |                  |                  |                    |                      |                              |                                  |                  |                        |
|----------------------------|----------|-------------------------------------|------------------|------------------|--------------------|----------------------|------------------------------|----------------------------------|------------------|------------------------|
| MITIGATION CREDITS         |          |                                     |                  |                  |                    |                      |                              |                                  |                  |                        |
|                            | Stre     | eam                                 | Riparian         | Riparian Wetland |                    | Non-Riparian Wetland |                              | Buffer Nitrogen Nutrient Offset  |                  | Nutrient Offset        |
| Туре                       | R        | RE                                  | R                | RE R RE          |                    |                      |                              |                                  |                  |                        |
| Totals                     | 2,135    | N/A                                 | N/A              | N/A              | N/A N/A            |                      | N/A                          | N/A                              | N,               | /A                     |
| PROJECT COMPONENTS         |          |                                     |                  |                  |                    |                      |                              |                                  |                  |                        |
| Rea                        | ach ID   | Centerline<br>Stationing            | Existing Footage | Approach         | Restoration or Res | toration Equivalent  | Restoration<br>Footage (LF)* | As-Built Thalweg<br>Footage (LF) | Mitigation Ratio | Credits<br>(SMU / WMU) |
|                            |          |                                     |                  |                  | STREAMS            |                      |                              |                                  |                  |                        |
| Martin                     | Dairy R1 | 100+13 - 101+38,<br>101+78 - 107+61 | 503              | P1               | Resto              | ration               | 708                          | 721                              | 1                | 708                    |
| Martin                     | Dairy R2 | 107+61 - 119+71                     | 1,173            | P1               | Restoration        |                      | 1,210                        | 1,258                            | 1                | 1,210                  |
| l                          | JT1      | 200+33 - 202+50                     | 138              | PII              | Restoration        |                      | 217                          | 214                              | 1                | 217                    |

| COMPONENT SUMMATION       |             |             |                                                              |   |   |   |  |  |  |
|---------------------------|-------------|-------------|--------------------------------------------------------------|---|---|---|--|--|--|
| Restoration Level         | Stream (LF) | Riparian We | Riparian Wetland (acres) Non-Riparian Wetland (acres) Buffer |   |   |   |  |  |  |
|                           |             | Riverine    | Non-Riverine                                                 |   |   |   |  |  |  |
| Restoration               | 2,135       | -           | -                                                            | - | - | - |  |  |  |
| Enhancement               |             | -           | -                                                            | - | - | - |  |  |  |
| Enhancement I             | -           |             |                                                              |   |   |   |  |  |  |
| Enhancement II            | -           |             |                                                              |   |   |   |  |  |  |
| Creation                  |             | -           | -                                                            | - |   |   |  |  |  |
| Preservation              | -           | -           | -                                                            | - |   | - |  |  |  |
| High Quality Preservation | -           | -           | -                                                            | - |   | - |  |  |  |

N/A: not applicable

\*Linear footage calculated along stream centerline.

## **Table 2. Project Activity and Reporting History** Martin Dairy Mitigation Site

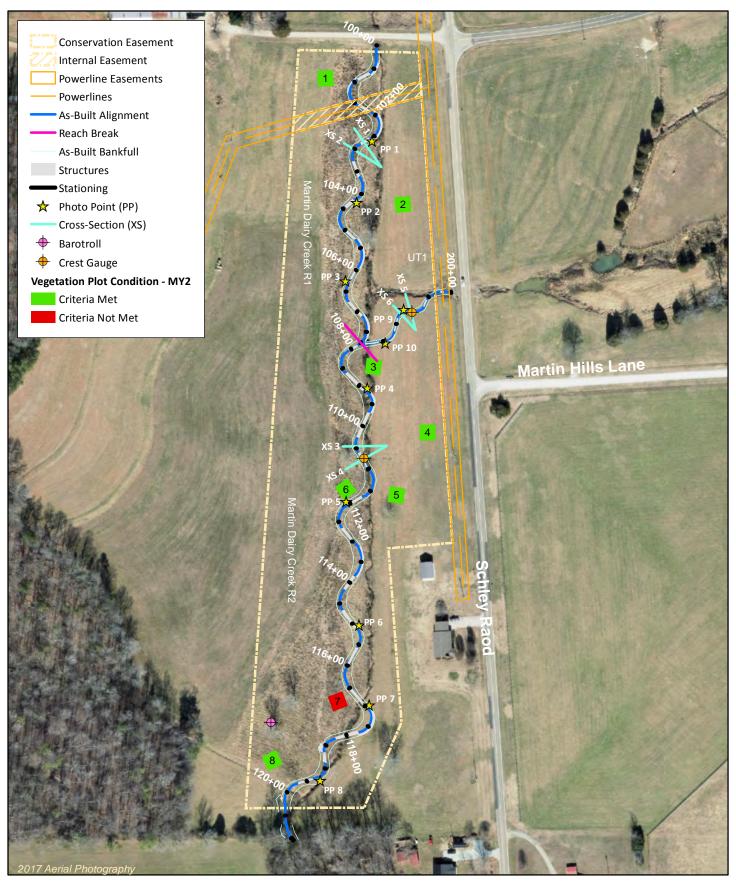
Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 

| Activity or Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | Data Collection Complete | Completion or Scheduled Delivery |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|----------------------------------|
| Mitigation Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | March 2017               | March 2017                       |
| Final Design - Construction Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | March 2017               | March 2017                       |
| Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | June 2017 - July 2017    | July 2017                        |
| Temporary S&E mix applied to entire project area <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | June 2017 - July 2017    | July 2017                        |
| Permanent seed mix applied to reach/segments <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | June 2017 - July 2017    | July 2017                        |
| Bare root and live stake plantings for reach/segments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | December 2017            | December 2017                    |
| Baralla Marilada Barana (Wang)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stream Survey     | August 2017              | 1                                |
| Baseline Monitoring Document (Year 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vegetation Survey | January 2018             | January 2018                     |
| Marca A Marchael                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stream Survey     | June 2018                | December 2018                    |
| Year 1 Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vegetation Survey | September 2018           | December 2018                    |
| Variable Control of the Control of t | Stream Survey     | May 2019                 | B                                |
| Year 2 Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vegetation Survey | September 2019           | December 2019                    |
| Vaca 2 Manitaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stream Survey     | 2020                     | December 2020                    |
| Year 3 Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vegetation Survey | 2020                     | December 2020                    |
| March March and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stream Survey     | 2021                     | December 2021                    |
| Year 4 Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vegetation Survey | 2021                     | December 2021                    |
| Marie E Marie da de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stream Survey     | 2022                     | B                                |
| Year 5 Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vegetation Survey | 2022                     | December 2022                    |
| Variable Committee Committ | Stream Survey     | 2023                     | D                                |
| Year 6 Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vegetation Survey | 2023                     | December 2023                    |
| Vaca 7 Manitania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stream Survey     | 2024                     | D                                |
| Year 7 Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vegetation Survey | 2024                     | December 2024                    |

<sup>&</sup>lt;sup>1</sup>Seed and mulch is added as each section of construction is completed.

#### Table 3. Project Contact Table

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 


|                         | Wildlands Engineering, Inc.           |
|-------------------------|---------------------------------------|
| Designer                | 312 West Millbrook Road, Suite 225    |
| Angela Allen, PE        | Raleigh, NC 27609                     |
|                         | 919.851.9986                          |
|                         | Land Mechanic Designs, Inc.           |
| Construction Contractor | 126 Circle G Lane                     |
|                         | Willow Spring, NC 27592               |
|                         | Bruton Natural Systems, Inc           |
| Planting Contractor     | P.O. Box 1197                         |
|                         | Fremont, NC 27830                     |
|                         | Land Mechanic Designs, Inc.           |
| Seeding Contractor      | 126 Circle G Lane                     |
|                         | Willow Spring, NC 27592               |
| Seed Mix Sources        | Green Resource, LLC                   |
| Nursery Stock Suppliers | Dykes and Sons Nursery and Greenhouse |
| Bare Roots              | Dykes and sons Nursery and Greenhouse |
| Live Stakes             | Bruton Natural Systems, Inc           |
| Monitoring Performers   | Wildlands Engineering, Inc.           |
| Monitoring, POC         | Jason Lorch                           |
| iviolitoring, roc       | 919.851.9986                          |

#### Table 4. Project Information and Attributes

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 

|                                                                                    | PROJECT                                        | INFORMATI        | ON                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |  |  |  |
|------------------------------------------------------------------------------------|------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| Project Name                                                                       | Martin Dairy M                                 | litigation Site  |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |  |  |  |
| County                                                                             | Orange County                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |  |  |  |
| Project Area (acres)                                                               | 11.155                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |  |  |  |
| Project Coordinates (latitude and longitude)                                       | 36° 7′ 25.76″ N                                | 79° 0′ 14 26″    | W                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |  |  |  |
|                                                                                    | •                                              |                  | INFORMATION                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |  |  |  |
| Physiographic Province                                                             | <u>,                                      </u> |                  | lmont Physiographic Pro                                                                                                                                                                                                                                                                                                                                                                                  | nyince                                               |  |  |  |
| River Basin                                                                        | Neuse River                                    |                  | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                    |                                                      |  |  |  |
| USGS Hydrologic Unit 8-digit                                                       | 03020201                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |  |  |  |
| USGS Hydrologic Unit 14-digit                                                      | 03020201                                       | 130              |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |  |  |  |
| DWR Sub-basin                                                                      | 03-04-01                                       | .50              |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |  |  |  |
| Project Drainiage Area (acres)                                                     | 526                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |  |  |  |
| Project Drainage Area (acres)  Project Drainage Area Percentage of Impervious Area | 0.4%                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |  |  |  |
| CGIA Land Use Classification                                                       |                                                | 1 40 60/ cultive | atad 0.49/ impaniant                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |  |  |  |
|                                                                                    | EACH SUMM                                      |                  | ated, 0.4% impervious                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |  |  |  |
| , n                                                                                | LACH SOMM                                      | ART INFOR        | WATION                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |  |  |  |
| Parameters                                                                         |                                                | Martin D         | airy                                                                                                                                                                                                                                                                                                                                                                                                     | UT1                                                  |  |  |  |
| Length of Reach (linear feet) - Post-Restoration                                   |                                                | 1,918            |                                                                                                                                                                                                                                                                                                                                                                                                          | 217                                                  |  |  |  |
| Drainage Area (acres)                                                              |                                                | 526              |                                                                                                                                                                                                                                                                                                                                                                                                          | 141                                                  |  |  |  |
| NCDWR Stream Identification Score                                                  |                                                | 36.75            |                                                                                                                                                                                                                                                                                                                                                                                                          | 30.75                                                |  |  |  |
| NCDWR Water Quality Classification                                                 |                                                |                  | W                                                                                                                                                                                                                                                                                                                                                                                                        | S-IV                                                 |  |  |  |
| Morphological Desription (stream type)                                             |                                                | Perenni          | ial                                                                                                                                                                                                                                                                                                                                                                                                      | Perennial                                            |  |  |  |
| Evolutionary Trend (Simon's Model) - Pre-Restoration                               |                                                |                  | IV: Degradatio                                                                                                                                                                                                                                                                                                                                                                                           | on and Widening                                      |  |  |  |
| Underlying Mapped Soils                                                            |                                                |                  | Chewacla loam, Herndor                                                                                                                                                                                                                                                                                                                                                                                   | n silt loam, Tatum silt loam                         |  |  |  |
| Drainage Class                                                                     |                                                | -                |                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                    |  |  |  |
| Soil Hydric Status                                                                 |                                                | -                |                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                    |  |  |  |
| Slope                                                                              |                                                | -                |                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                    |  |  |  |
| FEMA Classification                                                                |                                                |                  | N                                                                                                                                                                                                                                                                                                                                                                                                        | I/A                                                  |  |  |  |
| Native Vegetation Community                                                        |                                                |                  | Piedmont Bot                                                                                                                                                                                                                                                                                                                                                                                             | tomland Forest                                       |  |  |  |
| Percent Composition Exotic Invasive Vegetation - Post-Restoration                  |                                                |                  | (                                                                                                                                                                                                                                                                                                                                                                                                        | 0%                                                   |  |  |  |
|                                                                                    | REGULATORY                                     | CONSIDERA        | ATIONS                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |  |  |  |
| Regulation                                                                         | Applicable?                                    | Resolved?        |                                                                                                                                                                                                                                                                                                                                                                                                          | Supporting Documentation                             |  |  |  |
| Waters of the United States - Section 404                                          | Yes                                            | Yes              | USACE Nationwide Pe                                                                                                                                                                                                                                                                                                                                                                                      | ermit No. 27 and DWQ 401 Water Quality Certification |  |  |  |
| Waters of the United States - Section 401                                          | Yes                                            | Yes              |                                                                                                                                                                                                                                                                                                                                                                                                          | No. 4087.                                            |  |  |  |
| Division of Land Quality (Dam Safety)                                              | N/A                                            | N/A              |                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                  |  |  |  |
| Endangered Species Act                                                             | Yes                                            | Yes              | Martin Diary Mitigation Plan; Wildlands determined "no effect" on Orange County listed endangered species. The USFWS responded on June 3, 2016 and concurred with NCWRC stating that "the proposed action is not likely to adversely affect any federally-listed endangered or threatened species, their formally designated critical habitat, or species currently proposed for listing under the Act." |                                                      |  |  |  |
| Historic Preservation Act                                                          | Yes                                            | Yes              | Correspondence from SHPO on June 3, 2016 indicating they were not aware of any historic resources that would be affected by the project.                                                                                                                                                                                                                                                                 |                                                      |  |  |  |
| Coastal Zone Management Act (CZMA)/Coastal Area Management Act                     |                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |  |  |  |
| (CAMA)                                                                             | N/A                                            | N/A              |                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                  |  |  |  |
| FEMA Floodplain Compliance                                                         | N/A                                            | N/A              |                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                  |  |  |  |
|                                                                                    | N/A                                            | N/A              | N/A                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |  |  |  |







0 100 200 Feet

Figure 3. Intergrated Current Condition Plan View
Martin Dairy Mitigation Site
DMS Project No. 97087
Monitoring Year 2 - 2019
Orange County, NC

#### Table 5a. Visual Stream Morphology Stability Assessment Table

Martin Dairy Mitigation Project DMS Project No. 97087 Monitoring Year 2 - 2019

| Martin Dairy Reach 1      |                        |                                                                                                                                                                      |                                                |                             |                                   |                                  |                                        |                                                   |                                                    |                                                    |
|---------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Major Channel<br>Category | Channel Sub-Category   | Metric                                                                                                                                                               | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-Built | Number of<br>Unstable<br>Segments | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended | Number with<br>Stabilizing<br>Woody<br>Vegetation | Footage with<br>Stabilizing<br>Woody<br>Vegetation | Adjust % for<br>Stabilizing<br>Woody<br>Vegetation |
| 1. Bed                    | 1. Vertical Stability  | Aggradation                                                                                                                                                          |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                           | (Riffle and Run Units) | Degradation                                                                                                                                                          |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                           | 2. Riffle Condition    | Texture/Substrate                                                                                                                                                    | 8                                              | 8                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 3. Meander Pool        | Depth Sufficient                                                                                                                                                     | 9                                              | 9                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | Condition              | Length Appropriate                                                                                                                                                   | 9                                              | 9                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           |                        | Thalweg centering at upstream of meander bend (Run)                                                                                                                  | 8                                              | 8                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 4. Thalweg Position    | Thalweg centering at downstream of meander bend (Glide)                                                                                                              | 9                                              | 9                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| 2. Bank                   |                        |                                                                                                                                                                      |                                                |                             |                                   | 1                                | 1                                      | 1                                                 |                                                    |                                                    |
|                           | 1. Scoured/Eroded      | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.                                                                            |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                           | 2. Undercut            | Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                           | 3. Mass Wasting        | Bank slumping, calving, or collapse.                                                                                                                                 |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
| 3. Engineered             |                        |                                                                                                                                                                      |                                                | Totals                      | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
| Structures <sup>1</sup>   | 1. Overall Integrity   | Structures physically intact with no dislodged boulders or logs.                                                                                                     | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 2. Grade Control       | Grade control structures exhibiting maintenance of grade across the sill.                                                                                            | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 2a. Piping             | Structures lacking any substantial flow underneath sills or arms.                                                                                                    | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 3. Bank Protection     | Bank erosion within the structures extent of influence does not exceed 15%.                                                                                          | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 4. Habitat             | Pool forming structures maintaining ~Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.                                            | 6                                              | 6                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 1                      | L                                                                                                                                                                    |                                                |                             |                                   |                                  |                                        |                                                   |                                                    |                                                    |

<sup>&</sup>lt;sup>1</sup>Excludes constructed riffles since they are evaluated in section 1.

#### Table 5b. Visual Stream Morphology Stability Assessment Table

Martin Dairy Mitigation Project DMS Project No. 97087 Monitoring Year 2 - 2019

| Martin Dairy Read         | :h 2                   |                                                                                                                                                                      |                                                |                             |                                   |                                  |                                        |                                                   |                                           |                                                    |
|---------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------------|
| Major Channel<br>Category | Channel Sub-Category   | Metric                                                                                                                                                               | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-Built | Number of<br>Unstable<br>Segments | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended | Number with<br>Stabilizing<br>Woody<br>Vegetation | Footage with Stabilizing Woody Vegetation | Adjust % for<br>Stabilizing<br>Woody<br>Vegetation |
| 1. Bed                    | 1. Vertical Stability  | Aggradation                                                                                                                                                          |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                           |                                                    |
|                           | (Riffle and Run Units) | Degradation                                                                                                                                                          |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                           |                                                    |
|                           | 2. Riffle Condition    | Texture/Substrate                                                                                                                                                    | 13                                             | 13                          |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                           | 3. Meander Pool        | Depth Sufficient                                                                                                                                                     | 13                                             | 13                          |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                           | Condition              | Length Appropriate                                                                                                                                                   | 13                                             | 13                          |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                           |                        | Thalweg centering at upstream of meander bend (Run)                                                                                                                  | 13                                             | 13                          |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                           | 4. Thalweg Position    | Thalweg centering at downstream of meander bend (Glide)                                                                                                              | 13                                             | 13                          |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
| 2. Bank                   |                        |                                                                                                                                                                      |                                                |                             |                                   |                                  |                                        | l                                                 |                                           |                                                    |
|                           | 1. Scoured/Eroded      | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.                                                                            |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                       | n/a                                                |
|                           | 2. Undercut            | Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                       | n/a                                                |
|                           | 3. Mass Wasting        | Bank slumping, calving, or collapse                                                                                                                                  |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                       | n/a                                                |
| 3. Engineered             | 1                      |                                                                                                                                                                      | l                                              | Totals                      | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                       | n/a                                                |
| Structures <sup>1</sup>   | 1. Overall Integrity   | Structures physically intact with no dislodged boulders or logs.                                                                                                     | 8                                              | 8                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                           | 2. Grade Control       | Grade control structures exhibiting maintenance of grade across the sill.                                                                                            | 8                                              | 8                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                           | 2a. Piping             | Structures lacking any substantial flow underneath sills or arms.                                                                                                    | 8                                              | 8                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                           | 3. Bank Protection     | Bank erosion within the structures extent of influence does not exceed 15%.                                                                                          | 8                                              | 8                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                           | 4. Habitat             | Pool forming structures maintaining "Max Pool Depth: Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.                                            | 4                                              | 4                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |

<sup>&</sup>lt;sup>1</sup>Excludes constructed riffles since they are evaluated in section 1.

#### Table 5c. Visual Stream Morphology Stability Assessment Table

Martin Dairy Mitigation Project DMS Project No. 97087 Monitoring Year 2 - 2019

| Major Channel Category  | Channel Sub-Category   | Metric                                                                                                                                                               | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-Built | Number of<br>Unstable<br>Segments | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended | Number with<br>Stabilizing<br>Woody<br>Vegetation | Footage with Stabilizing Woody Vegetation | Adjust % for<br>Stabilizing<br>Woody<br>Vegetation |
|-------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------------|
| 1. Bed                  | 1. Vertical Stability  | Aggradation                                                                                                                                                          |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                           |                                                    |
|                         | (Riffle and Run Units) | Degradation                                                                                                                                                          |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                           |                                                    |
|                         | 2. Riffle Condition    | Texture/Substrate                                                                                                                                                    | 4                                              | 4                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                         | 3. Meander Pool        | Depth Sufficient                                                                                                                                                     | 4                                              | 4                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                         | Condition              | Length Appropriate                                                                                                                                                   | 4                                              | 4                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                         |                        | Thalweg centering at upstream of meander bend (Run)                                                                                                                  | 4                                              | 4                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                         | 4. Thalweg Position    | Thalweg centering at downstream of meander bend (Glide)                                                                                                              | 4                                              | 4                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
| 2. Bank                 | 1. Scoured/Eroded      | Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.                                                                            |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                       | n/a                                                |
|                         | 2. Undercut            | Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat. |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                       | n/a                                                |
|                         | 3. Mass Wasting        | Bank slumping, calving, or collapse                                                                                                                                  |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                       | n/a                                                |
| 3. Engineered           |                        |                                                                                                                                                                      |                                                | Totals                      | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                       | n/a                                                |
| Structures <sup>1</sup> | 1. Overall Integrity   | Structures physically intact with no dislodged boulders or logs.                                                                                                     | 1                                              | 1                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                         | 2. Grade Control       | Grade control structures exhibiting maintenance of grade across the sill.                                                                                            | 1                                              | 1                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                         | 2a. Piping             | Structures lacking any substantial flow underneath sills or arms.                                                                                                    | 1                                              | 1                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                         | 3. Bank Protection     | Bank erosion within the structures extent of influence does not exceed 15%.                                                                                          | 1                                              | 1                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |
|                         | 4. Habitat             | Pool forming structures maintaining<br>~Max Pool Depth: Bankfull Depth ≥ 1.6<br>Rootwads/logs providing some cover at<br>baseflow.                                   | 2                                              | 2                           |                                   |                                  | 100%                                   |                                                   |                                           |                                                    |

<sup>&</sup>lt;sup>1</sup>Excludes constructed riffles since they are evaluated in section 1.

### **Table 6. Vegetation Condition Assessment Table**

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 

**Planted Acreage** 

10.139

| Tidifica Acreage                                                                            | 10.133                                                   |                              |                    |                     |                         |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|--------------------|---------------------|-------------------------|
| Vegetation Category                                                                         | Definitions                                              | Mapping<br>Threshold<br>(Ac) | Number of Polygons | Combined<br>Acreage | % of Planted<br>Acreage |
| Bare Areas                                                                                  | Very limited cover of both woody and herbaceous material |                              | 0                  | 0                   | 0%                      |
| Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria. |                                                          | 0.1                          | 0                  | 0                   | 0%                      |
|                                                                                             |                                                          | Total                        | 0                  | 0                   | 0%                      |
| Areas with woody stems of a size class that are obviously small given the monitoring year.  |                                                          | 0.25 Ac                      | 0                  | 0                   | 0%                      |
|                                                                                             | Curr                                                     | nulative Total               | 0                  | 0.0                 | 0%                      |

**Easement Acreage** 

11.155

| Vegetation Category                                                                         | Vegetation Category Definitions                                    |       | Number of Polygons | Combined<br>Acreage | % of<br>Easement<br>Acreage |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------|--------------------|---------------------|-----------------------------|
| vasive Areas of Concern  Areas of points (if too small to render as polygons at map scale). |                                                                    | 1,000 | 0                  | 0                   | 0%                          |
|                                                                                             |                                                                    |       |                    |                     |                             |
| Easement Encroachment Areas                                                                 | Areas of points (if too small to render as polygons at map scale). | none  | 0                  | 0                   | 0%                          |

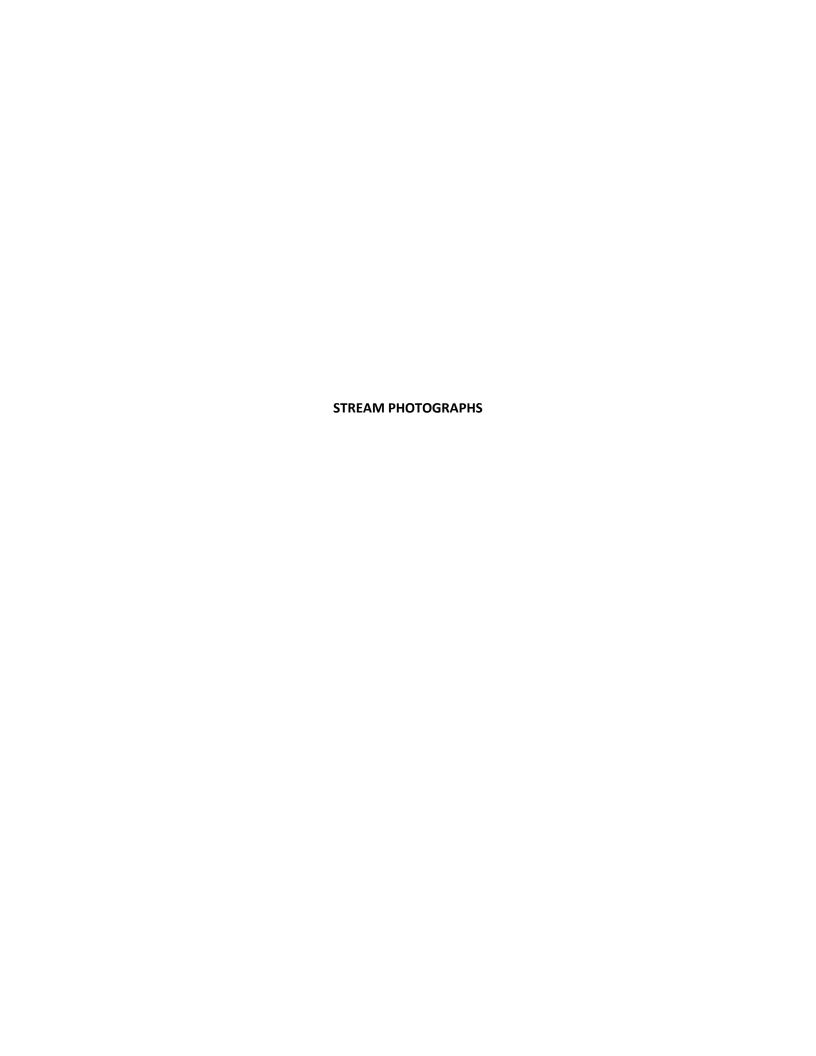





PHOTO POINT 1 Martin Dairy R1 – upstream (5/8/2019)



PHOTO POINT 1 Martin Dairy R1 – downstream (5/8/2019)



PHOTO POINT 2 Martin Dairy R1 – upstream (5/8/2019)



PHOTO POINT 2 Martin Dairy R1 – downstream (5/8/2019)



PHOTO POINT 3 Martin Dairy R1 – upstream (5/8/2019)



PHOTO POINT 3 Martin Dairy R1 – downstream (5/8/2019)





PHOTO POINT 7 Martin Dairy R2 – upstream (5/8/2019)



PHOTO POINT 7 Martin Dairy R2 – downstream (5/8/2019)



PHOTO POINT 8 Martin Dairy R2 – upstream (5/8/2019)



PHOTO POINT 8 Martin Dairy R2 – downstream (5/8/2019)



**PHOTO POINT 9 UT1 –** upstream (5/8/2019)



PHOTO POINT 9 UT1 – downstream (5/8/2019)











**Table 7. Vegetation Plot Criteria Attainment Table** 

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 

| Plot | MY2 Success Criteria Met | Tract Mean |
|------|--------------------------|------------|
| 1    | Yes                      |            |
| 2    | Yes                      |            |
| 3    | Yes                      |            |
| 4    | Yes                      | 88%        |
| 5    | Yes                      | 00/0       |
| 6    | Yes                      |            |
| 7    | No*                      |            |
| 8    | Yes                      |            |

<sup>\*</sup>Vegetation Plot 7 is not going to meet interim success criteria for MY3 of 310 planted stems per acre. However, when including voluntees Vegetation Plot 7 is on track to meet interim success criteria for MY3 and is on track to meet interim success criteria for MY5 of 260 planted stems per acre.

## Table 8. CVS Vegetation Tables - Metadata

Martin Dairy Mitigation Project DMS Project No. 97087

Monitoring Year 2 - 2019

| Jason Lorch                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9/20/2019 14:12                                                                                                                                           |
| Martin Dairy- cvs-v2.5.0 MY2.mdb                                                                                                                          |
| F:\Projects\005-02158 Martin Dairy\Monitoring\Monitoring Year 2\Vegetation Assessment                                                                     |
| CARLYNN-PC                                                                                                                                                |
| 51679232                                                                                                                                                  |
|                                                                                                                                                           |
| Description of database file, the report worksheets, and a summary of project(s) and project data.                                                        |
| Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.                                                         |
| Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.       |
| List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).                                                            |
| Frequency distribution of vigor classes for stems for all plots.                                                                                          |
| Frequency distribution of vigor classes listed by species.                                                                                                |
| List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.                                              |
| Damage values tallied by type for each species.                                                                                                           |
| Damage values tallied by type for each plot.                                                                                                              |
| A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.                                         |
| A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded. |
|                                                                                                                                                           |
| 97087                                                                                                                                                     |
| Martin Dairy                                                                                                                                              |
| Stream Restoration Project                                                                                                                                |
| 8                                                                                                                                                         |
|                                                                                                                                                           |

**Table 9. Planted and Total Stem Counts** 

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 

|                           |                   |              | Current Plot Data (MY2 2019) |       |     |       |       |     |       |       |     |       |       |     |       |       |     |
|---------------------------|-------------------|--------------|------------------------------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|-----|
|                           |                   |              |                              | VP 1  |     |       | VP 2  |     |       | VP 3  |     |       | VP 4  |     |       | VP 5  |     |
| Scientific Name           | Common Name       | Species Type | PnoLS                        | P-all | Т   | PnoLS | P-all | Т   | PnoLS | P-all | Т   | PnoLS | P-all | Т   | PnoLS | P-all | Т   |
| Betula nigra              | River Birch       | Tree         | 1                            | 1     | 1   | 2     | 2     | 2   | 3     | 3     | 3   | 1     | 1     | 1   | 3     | 3     | 3   |
| Cephalanthus occidentalis | Buttonbush        | Shrub Tree   |                              |       |     |       |       |     |       |       |     |       |       |     |       |       |     |
| Cercis canadensis         | Red Bud           | Shrub Tree   |                              |       |     |       |       |     |       |       |     |       |       |     |       |       |     |
| Cornus florida            | Flowering Dogwood | Shrub Tree   |                              |       |     |       |       |     |       |       |     |       |       |     |       |       |     |
| Fraxinus pennsylvanica    | Green Ash         | Tree         | 2                            | 2     | 2   | 3     | 3     | 3   | 2     | 2     | 2   | 3     | 3     | 3   | 1     | 1     | 1   |
| Liquidambar styraciflua   | Sweet Gum         | Tree         |                              |       |     |       |       |     |       |       | 4   |       |       | 1   |       |       |     |
| Liriodendron tulipifera   | Tulip Poplar      | Tree         | 3                            | 3     | 3   |       |       |     |       |       |     | 1     | 1     | 1   |       |       |     |
| Platanus occidentalis     | Sycamore          | Tree         | 2                            | 2     | 2   | 2     | 2     | 2   | 2     | 2     | 2   | 2     | 2     | 2   | 4     | 4     | 4   |
| Pyrus calleryana          | Bradford Pear     | Tree         |                              |       | 1   |       |       |     |       |       |     |       |       |     |       |       | 2   |
| Quercus palustris         | Pin Oak           | Tree         |                              |       |     | 2     | 2     | 2   | 2     | 2     | 2   | 3     | 3     | 3   |       |       |     |
| Quercus phellos           | Willow Oak        | Tree         | 3                            | 3     | 3   | 2     | 2     | 2   | 1     | 1     | 1   | 2     | 2     | 2   | 2     | 2     | 2   |
| Ulmus                     | Elm               | Tree         |                              |       |     |       |       |     |       |       |     |       |       | 1   |       |       |     |
|                           |                   | Stem count   | 11                           | 11    | 11  | 11    | 11    | 11  | 10    | 10    | 14  | 12    | 12    | 14  | 10    | 10    | 10  |
|                           | size (are:        |              |                              | 1     |     |       | 1     |     |       | 1     |     |       | 1     |     |       | 1     |     |
|                           | size (ACRES       |              |                              | 0.02  |     |       | 0.02  |     |       | 0.02  |     |       | 0.02  |     |       | 0.02  |     |
| Species count             |                   |              | 5                            | 5     | 5   | 5     | 5     | 5   | 5     | 5     | 6   | 6     | 6     | 8   | 4     | 4     | 4   |
|                           | Stems per ACRE    |              |                              | 445   | 445 | 445   | 445   | 445 | 405   | 405   | 567 | 486   | 486   | 567 | 405   | 405   | 405 |

## **Color for Density**

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteers

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

T: Total Stems

**Table 9. Planted and Total Stem Counts** 

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 

|                           |                   |               | Current Plot Data (MY2 2019) |       |     |       |         |     | Annual Means |         |      |       |          |     |       |       |     |       |       |     |
|---------------------------|-------------------|---------------|------------------------------|-------|-----|-------|---------|-----|--------------|---------|------|-------|----------|-----|-------|-------|-----|-------|-------|-----|
|                           |                   |               | VP 6                         |       |     | M     | Y2 (201 | .9) | М            | Y1 (201 | L8)  | M     | IYO (201 | 8)  |       |       |     |       |       |     |
| Scientific Name           | Common Name       | Species Type  | PnoLS                        | P-all | Т   | PnoLS | P-all   | Т   | PnoLS        | P-all   | Т    | PnoLS | P-all    | Т   | PnoLS | P-all | Т   | PnoLS | P-all | Т   |
| Betula nigra              | River Birch       | Tree          | 2                            | 2     | 2   | 1     | 1       | 1   | 1            | 1       | 1    | 14    | 14       | 14  | 16    | 16    | 16  | 17    | 17    | 17  |
| Cephalanthus occidentalis | Buttonbush        | Shrub Tree    |                              |       | 11  |       |         | 1   |              |         |      |       |          | 12  |       |       | 8   |       |       |     |
| Cercis canadensis         | Red Bud           | Shrub Tree    |                              |       |     |       |         |     |              |         |      |       |          |     | 1     | 1     | 1   | 3     | 3     | 3   |
| Cornus florida            | Flowering Dogwood | Shrub Tree    |                              |       |     |       |         |     |              |         |      |       |          |     | 2     | 2     | 2   | 2     | 2     | 2   |
| Fraxinus pennsylvanica    | Green Ash         | Tree          | 1                            | 1     | 1   | 1     | 1       | 3   | 2            | 2       | 30   | 15    | 15       | 45  | 17    | 17    | 29  | 18    | 18    | 18  |
| Liquidambar styraciflua   | Sweet Gum         | Tree          |                              |       |     |       |         |     |              |         | 4    |       |          | 9   |       |       | 2   |       |       |     |
| Liriodendron tulipifera   | Tulip Poplar      | Tree          |                              |       |     |       |         |     | 1            | 1       | 3    | 5     | 5        | 7   | 7     | 7     | 7   | 19    | 19    | 19  |
| Platanus occidentalis     | Sycamore          | Tree          | 4                            | 4     | 4   | 4     | 4       | 4   | 2            | 2       | 7    | 22    | 22       | 27  | 24    | 24    | 25  | 25    | 25    | 25  |
| Pyrus calleryana          | Bradford Pear     | Tree          |                              |       |     |       |         |     |              |         |      |       |          | 3   |       |       |     |       |       |     |
| Quercus palustris         | Pin Oak           | Tree          | 2                            | 2     | 2   | 1     | 1       | 1   | 2            | 2       | 2    | 12    | 12       | 12  | 16    | 16    | 16  | 20    | 20    | 20  |
| Quercus phellos           | Willow Oak        | Tree          | 1                            | 1     | 1   |       |         |     | 1            | 1       | 1    | 12    | 12       | 12  | 14    | 14    | 14  | 14    | 14    | 14  |
| Ulmus                     | Elm               | Tree          |                              |       |     |       |         |     |              |         | 1    |       |          | 2   |       |       | 1   |       |       |     |
|                           |                   | Stem count    | 10                           | 10    | 21  | 7     | 7       | 10  | 9            | 9       | 49   | 80    | 80       | 140 | 97    | 97    | 121 | 118   | 118   | 118 |
|                           |                   | size (ares)   |                              | 1     |     |       | 1       |     |              | 1       |      |       | 8        |     |       | 8     |     |       | 8     |     |
|                           |                   | size (ACRES)  |                              | 0.02  |     |       | 0.02    |     |              | 0.02    |      |       | 0.20     |     |       | 0.20  |     |       | 0.20  |     |
|                           |                   | Species count | 5                            | 5     | 6   | 4     | 4       | 5   | 6            | 6       | 8    | 6     | 6        | 9   | 8     | 8     | 11  | 8     | 8     | 8   |
|                           | Stems per ACRE    |               | 405                          | 405   | 850 | 283   | 283     | 405 | 364          | 364     | 1983 | 405   | 405      | 708 | 491   | 491   | 612 | 597   | 597   | 597 |

## **Color for Density**

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteers

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

T: Total Stems



#### Table 10a. Baseline Stream Data Summary

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019

| Bankfull Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Martin Dairy                                       |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------|-----------|-----------|-----------|----------|------|--------|---------|-----------|----------|------------|--------------------------------------------------|--------|----------|--------|--------------------------------------------------|------------|------------|----------------|
| Parameter   Gage   Reach 1   Reach 2   Long Branch   Spencer Creek 2   Posts Creek   Reach 1   Reach 2   Reach 1   Reach 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |      | PRE-R     | ESTORAT   | ION CON   | DITION   |      | RE     | FERENCE | REACH D   | ATA      |            |                                                  | DES    | IGN      |        |                                                  | AS-BUIL    | T/BASELINE |                |
| Dimension and Substrate - NRIFE   Sandfull Width (fit)   S.8   14.0   34.8   18.8   10.7   11.2   18.5   19.4   15.0   15.2   14.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8   12.8     | Parameter                                          | Gage |           |           |           |          | Long | Branch | Spence  | r Creek 2 | Foust    | Creek      |                                                  | •      |          |        |                                                  | •          |            | •              |
| Bankfull Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |      |           |           | ļ         |          | Min  | Max    | Min     | Max       | Min      | Max        | Min                                              | Max    | Min      | Max    | Min                                              | Max        | Min        | Max            |
| Floodprone Width (ft)   Bankfull Man Depth   Bank  |                                                    |      |           |           |           |          | 110  | 10.0   | 107     | 144.2     | 10.5     | 10.4       |                                                  | 5.0    |          | c 2    |                                                  | 1.0        |            | 2.0            |
| 1.2   1.2   1.3   2.1   1.6   1.8   1.3   1.4   1.1   1.2   1.9   1.1   1.2   1.3   1.4   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Rankfull Max Depth   Rankfu   |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Bankfull Gross-Sectional Area (Ft)   Model    |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| The control of the   |                                                    | 1    |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| 142   143   3   5.5   10.2   2.6   3.4   2.25   2.25   10.1   1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | N/A  |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Profile    Note   Profile   Profile |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Riffle Length (ft)   Riffle Sippe (ft/ft)   Riffle Sippe (ft/ft/ft)      |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Riffie Length (r)   Riffie Stope (ft/File   Riffie May parts is competency)   Mark Stope (Length (r)   Riffie Sto)   Riffie Stope (ft/File   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Riffie Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark Stope (Length (r)   Riffie May parts is Competency)   Mark   | ,                                                  | 1    |           |           | 1 1.      | 1.0      | · ·  |        |         |           | _        |            | <u>_</u>                                         | 0.0    | 1 1      | 10.6   |                                                  | ۷. 1       |            | 0.2            |
| Briffe Slope (ft/ft)   Pool (length ft)   Pool (length ft)   Pool Max Depth (ft)   Poo  |                                                    | 1    |           |           | 1         |          | 1    |        |         |           |          |            | 1                                                |        | ı        |        | 12.0                                             | 25.0       | 16.7       | F1.0           |
| Pool Length (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            | 51.0<br>0.0266 |
| Pool Max Depth (f)   Pool Spacing (ft)   Poo  |                                                    |      |           |           | _         |          |      |        |         |           | 0.0150   | 0.0350     | 0.0060                                           | 0.0180 | 0.0060   | 0.0190 |                                                  |            |            | 83.1           |
| Pool Spacing (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | N/A  |           |           |           |          |      |        |         |           | 2.5      | 2.0        | 1.2                                              |        | 1.4      | 2.6    |                                                  |            |            | 1.9            |
| Pattern    Channel Beltwidth (It)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            | 111            |
| Section   Pattern   Pat   |                                                    |      | - 10      | 31        |           | 100      | 30   | 103    |         | , 1       | 73       |            | - 00                                             | 103    | - 03     | 113    | 72                                               | 101        | 33         |                |
| Channel Beltwidth (ft) Radius of Curvature (ft) Reclankfull Width (ft/ft) Reader Width Ratio Substrate, Bed and Transport Parameters  Risk/Rusk/Pis/Suk/Suk/Suk/Suk/Suk/Suk/Suk/Suk/Suk/Suk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                  |      |           |           |           |          |      |        |         |           |          |            |                                                  |        | <u> </u> |        |                                                  |            |            |                |
| The Brain Curvature (ft)   Resignative (ft)   Res  | ****                                               | 1    | 15        | 20        | 17        | 20       |      | 60     | 20      | 1 41      | l N      | /A         | 26                                               | 75     | 20       | 01     | 26                                               | 75         | 20         | 81             |
| NA   1.3   3.7   0.5   3.3   1.1   4.7   1.3   1.4   N/A   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   1.8   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0    |                                                    |      |           |           |           |          |      |        |         |           | _        |            |                                                  |        |          |        |                                                  |            |            | 81             |
| Meander Length (ft)   Meander Width Ratio   |                                                    | NI/A |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            | 5.0            |
| 1.7   2.3   1.2   2.0   3.2   4.1   3.4   3.6   N/A   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   2.4   5.0   5.0   2.4   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   | 1.7                                                | 11// |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            | 243            |
| Substrate, Bed and Transport Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            | 5.0            |
| Ri%/Ru%/P%/G%/S%   SC%/Sa%/G%/C%/B%/Be%   SC%/Sa%/G&/C%/Ba%/Be%   SC%/Sa%/G&/C%/Ba%/Be%   SC%/Sa%/G&/C%/Ba%/Be%   SC%/Sa%/G&/C%/Ba%/Be%   SC%/Sa%/G&/C%/Be%/Be%   SC%/Sa%/G&/C%/Be%/Be%   SC%/Sa%/G&/C%/Be%/Be%   SC%/Sa%/G&/C%/Be%/Be%   SC%/Sa%/G&/C%/Be%/Be%   SC%/Sa%/G&/C%/Be%/Be%/Be%/Be%/Be%/Be%/Be%/Be%/Be%/Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | 1    | 2.,       | 2.5       | 1         | 2.0      | 5.2  | 1      | 3       | 3.0       |          | , <u> </u> |                                                  | 3.0    |          | 3.0    |                                                  | 3.0        |            | 3.0            |
| SC%/Sa%/G%/C%/B%/Be%   d16/d3S/d50/d84/d95/d100   d16/d50/d50/d50/d50/d50/d50/d50/d50/d50/d50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 1    |           |           | 1         |          |      |        |         |           |          |            | 1                                                |        | ı        |        | Γ                                                |            |            |                |
| Additional Reach Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Additional Reach Parameters   Surfame Province (Spanish)   Stream Power (Capacity)   W/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3670/3870/670/670/670/670                          |      | 0 13/1 3/ | 2 6/4 6/7 | 2 4/8 1/1 | 1/15/33/ |      |        |         |           | <0.063/3 | 3/8 8/42/  |                                                  |        |          |        | SC/0.45                                          | /2 8/21 8/ | 0 11/1 10  | 1/5 0/27 6/    |
| Reach Shear Stress (Competency)   b/ft   Max part size (mm) mobilized at bankfull   Stream Power (Capacity) W/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d16/d35/d50/d84/d95/d100                           | N/A  |           |           |           |          |      |        | -       |           |          |            |                                                  |        |          |        |                                                  |            | -          |                |
| Max part size (mm) mobilized at bankfull Stream Power (Capacity) W/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Panch Shoar Strass (Compatancy) lh/ft <sup>2</sup> | 11/7 |           |           |           |          |      |        |         |           |          | -,         | 0                                                | 25     | 0        | 38     |                                                  |            |            |                |
| Stream Power (Capacity) W/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |      | - 0.      |           | - 0.      | 12       |      |        |         |           |          |            | Ŭ                                                | .23    | -        | .50    |                                                  |            |            | .13            |
| Additional Reach Parameters    Drainage Area (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Drainage Area (SM)   Watershed Impervious Cover Estimate (%)   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%     |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Watershed Impervious Cover Estimate (%)   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%   0.4%     |                                                    |      |           | 5.4       | 1 0       | 92       | 1    | 10     | 0       | 96        | 1        | 20         |                                                  | 5.4    | 0        | 92     |                                                  | 154        |            | 92             |
| CA/E4   CA/E4   CA/E4   E4   C4   CA/E4   CA  |                                                    | ł    |           |           |           |          | 1    | .+3    | 0.      | .50       | 1.       | J0         |                                                  |        |          |        |                                                  |            |            |                |
| Solution   |                                                    | 1    |           |           |           |          | CA   | 1/F/1  | -       | F/I       | ,        | `4         |                                                  |        |          |        |                                                  |            |            |                |
| Bankfull Discharge (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |      |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Channel Thalweg Length (ft)   Chan  |                                                    | 1    |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | 1    |           |           |           |          | 203  |        |         |           | - 0.     |            | <del>                                     </del> |        |          |        | <del>                                     </del> |            |            |                |
| Q-Mannings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    | N/A  |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Valley Length (ft)              607         1,043         607         1,043           Channel Thalweg Length (ft)                776         1,258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | 1,   |           |           |           |          |      |        |         |           |          |            |                                                  |        |          |        |                                                  |            |            |                |
| Channel Thalweg Length (ft) 776 1,258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | 1    |           |           | -         |          |      |        | -       |           |          |            | 6                                                | 07     | 1,       | 043    | - 6                                              | 507        | 1,         | 043            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | 1    | -         |           | -         |          |      |        | -       |           | -        |            |                                                  |        |          |        |                                                  | 776        |            |                |
| Sinuosity 1.05 1.09 1.30 2.30 1.10 1.25 1.28 1.27 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |      | 1.        | 05        | 1.        | 09       | 1    | .30    | 2.      | .30       | 1.       | 10         | 1                                                | .25    | 1        | .28    | 1                                                | 27         |            |                |
| Water Surface Slope (ft/ft) <sup>2</sup> 0.0046 0.0072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water Surface Slope (ft/ft) <sup>2</sup>           |      | -         |           | -         |          |      |        | -       |           | -        |            |                                                  |        |          |        | 0.0                                              | 0046       | 0.0        | 072            |
| Bankfull Slope (ft/ft) 0.009 0.007 0.004 0.005 0.009 0.005 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | 1    | 0.0       | 009       | 0.0       | 007      | 0.   | 004    | 0.0     | 005       | 0.0      | 009        |                                                  |        |          |        | 0.                                               | .005       | 0.         | .007           |

(---): Data was not provided N/A: Not Applicable

## Table 10b. Baseline Stream Data Summary

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019

| UT1                                                |       |     |                     |        |                   |        |                |      |                |       |       |                     |          |
|----------------------------------------------------|-------|-----|---------------------|--------|-------------------|--------|----------------|------|----------------|-------|-------|---------------------|----------|
|                                                    |       |     | RE-<br>RATION       |        | REF               | ERENCE | REACH D        | ATA  |                | DES   | SIGN  | AS-BUILT/           | BASELINE |
| Parameter                                          | Gage  | U   | Т1                  |        | cres UT1-<br>ch 3 |        | Polecat<br>eek |      | Varnals<br>eek | U     | T1    | UT                  | 1        |
|                                                    |       |     |                     | Min    | Max               | Min    | Max            | Min  | Max            | Min   | Max   | Min                 | Max      |
| Dimension and Substrate - Riffle                   |       |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| Bankfull Width (ft)                                |       | 5   | .7                  | 9.1    | 10.4              | 5.3    | 10.9           | 9.3  | 10.5           | 9     | .4    | 9.                  | 2        |
| Floodprone Width (ft)                              | 1     | 12  | 2.7                 | 3      | 16                | 25     | 65             | 20   | 64             | 21    | 47    | 6.                  | 5        |
| Bankfull Mean Depth                                |       | 1   | .0                  | 1.0    | 1.2               | 1.0    | 1.1            | 1.1  | 1.2            | 0     | .7    | 0.                  | 7        |
| Bankfull Max Depth                                 |       | 1   | .4                  | 1      | .8                | 1.4    | 1.7            | 1.5  | 1.7            | 0.8   | 1.3   | 1.                  | 4        |
| Bankfull Cross-Sectional Area (ft <sup>2</sup> )   | N/A   | 5   | .7                  | 10.7   | 11.3              | 5.4    | 12.4           | 10.3 | 12.3           | 6     | .7    | 6.                  | 3        |
| Width/Depth Ratio                                  | 1     | 5   | .7                  | 7.3    | 10.1              | 5.2    | 9.6            | 8.1  | 9.3            | 13    | 3.2   | 13                  | .3       |
| Entrenchment Ratio                                 | 1     | 2   | .2                  | 3      | .9                | 3.2    | 8.3            | 1.9  | 6.1            | 2.2   | 5.0   | 7.                  | 1        |
| Bank Height Ratio                                  |       | 2   | .1                  | 1      | .0                | 1.0    | 1.1            | 0.9  | 1.0            | 1.0   | 1.0   | 1.                  | 0        |
| D50 (mm)                                           |       | 5   | .1                  | -      |                   |        |                | -    |                | -     |       | 7.                  | 4        |
| Profile                                            |       |     |                     |        | •                 |        |                |      |                |       |       |                     |          |
| Riffle Length (ft)                                 |       | -   |                     |        |                   |        |                | -    |                | -     |       | 4                   | 28       |
| Riffle Slope (ft/ft)                               |       | -   |                     |        |                   |        | 0.004 0.047    |      | 0.057          | 0.006 | 0.024 | 0.009               | 0.016    |
| Pool Length (ft)                                   |       | -   |                     |        |                   |        |                | -    |                | -     |       | 4.2                 | 34.9     |
| Pool Max Depth (ft)                                | N/A   | 2   | 2.0                 |        | 2.5               |        | .8             | 2.5  | 2.6            | 0.8   | 2.2   | 0.4                 | 1.3      |
| Pool Spacing (ft)                                  | 1     | -   |                     |        |                   |        | 52             | 8    | 82             | 38    | 56    | 30                  | 73       |
| Pool Volume (ft <sup>3</sup> )                     |       |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| Pattern                                            |       |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| Channel Beltwidth (ft)                             |       | 9   | 19                  | 21     | 93                | 28     | 50             | 15   | 45             | 23    | 66    | 23                  | 66       |
| Radius of Curvature (ft)                           | 1     | 4   | 13                  | 14     | 60                | 19     | 50             | 8    | 47             | 17    | 52    | 17                  | 52       |
| Rc:Bankfull Width (ft/ft)                          | N/A   | 0.7 | 2.3                 | 14.0   | 60.0              | 2.0    | 5.3            | 0.6  | 3.2            | 1.8   | 5.5   | 1.8                 | 5.5      |
| Meander Length (ft)                                | 1     | 35  | 47                  | 121    | 171               |        |                |      |                | 56    | 155   | 56                  | 155      |
| Meander Width Ratio                                |       | 1.6 | 3.3                 | 2.3    | 8.9               | 3.0    | 5.3            | 1.0  | 3.0            | 2.4   | 7.0   | 2.4                 | 7.0      |
| Substrate, Bed and Transport Parameters            |       |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| Ri%/Ru%/P%/G%/S%                                   |       |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| SC%/Sa%/G%/C%/B%/Be%                               |       |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| d16/d35/d50/d84/d95/d100                           | N/A   |     | /5.1/6.7/<br>L3/-/- | -      |                   |        |                | -    |                | -     |       | 0.07/0.28/<br>37.9/ |          |
| Reach Shear Stress (Competency) lb/ft <sup>2</sup> | 14,74 |     | .6                  | -      |                   |        |                | -    |                | 0     | .2    | 0.                  |          |
| Max part size (mm) mobilized at bankfull           | ł     | _   |                     |        |                   |        |                |      |                | _     | -     | -                   |          |
| Stream Power (Capacity) W/m <sup>2</sup>           |       |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| Additional Reach Parameters                        | l     |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| Drainage Area (SM)                                 | ı     | 0   | 22                  | 0      | 30                | 0      | 41             | 0    | 41             | 0     | .22   | 0.2                 | )?       |
| Watershed Impervious Cover Estimate (%)            |       |     | 4%                  |        |                   |        |                |      |                |       | 4%    | 0.4                 |          |
| Rosgen Classification                              | ł     |     | /E4                 |        | 4                 |        | 4              |      | 4              |       | /E4   | C4/                 |          |
| Bankfull Velocity (fps)                            | ł     |     | .7                  | 2.2    | 2.4               | 2.2    | 3.5            | 4.4  | 5.2            |       | .6    | 2.                  |          |
| Bankfull Discharge (cfs)                           | 1     |     |                     |        | 5.0               |        | 0.3            |      | 4.0            |       | 4.0   | 21                  |          |
| Q-NFF regression                                   | 1     |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| Q-USGS extrapolation                               | N/A   |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| Q-Mannings                                         | 1,    |     |                     |        |                   |        |                |      |                |       |       |                     |          |
| Valley Length (ft)                                 | 1     | -   |                     | -      | -                 | -      |                | -    |                | 1     | 86    | 18                  | 6        |
| Channel Thalweg Length (ft)                        | 1     | -   |                     | -      |                   | -      |                | -    |                |       | 13    | 21                  |          |
| Sinuosity                                          | 1     | 1   | .1                  | 1      | .4                | 1      | .4             | 1    | .2             |       | .1    | 1.                  |          |
| Water Surface Slope (ft/ft) <sup>2</sup>           | 1     | -   |                     | -      |                   | -      |                | -    |                | -     |       | 0.00                | )72      |
| Bankfull Slope (ft/ft)                             | 1     | 0.0 | 160                 | 0.0039 | 0.0280            | 0.0    | 120            | 0.0  | 170            | -     |       | 0.01                | .03      |

(---): Data was not provided N/A: Not Applicable

Table 11. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section)

|                                                  | Martin Dairy Reach 1 Cross-Section 1 (Riffle) Cross-Section 2 (Pool) |       |           |          |       |          |          |       |          |          |        |     |
|--------------------------------------------------|----------------------------------------------------------------------|-------|-----------|----------|-------|----------|----------|-------|----------|----------|--------|-----|
|                                                  |                                                                      | Cros  | s-Section | on 1 (Ri | ffle) |          |          | Cro   | ss-Secti | ion 2 (P | ool)   |     |
| Dimension and Substrate                          | Base                                                                 | MY1   | MY2       | MY3      | MY5   | MY7      | Base     | MY1   | MY2      | MY3      | MY5    | MY7 |
| Bankfull Elevation (ft)                          | 505.8                                                                | 505.9 | 506.1     |          |       |          | 505.7    | 505.9 | 505.8    |          |        |     |
| Low Bank Elevation (ft)                          | 505.8                                                                | 506.1 | 506.1     |          |       |          | 505.7    | 505.8 | 505.8    |          |        |     |
| Bankfull Width (ft)                              | 14.8                                                                 | 15.0  | 14.5      |          |       |          | 20.0     | 22.5  | 19.5     |          |        |     |
| Floodprone Width (ft)                            | 150                                                                  | 150   | 150       |          |       |          | N/A      | N/A   | N/A      |          |        |     |
| Bankfull Mean Depth (ft)                         | 0.9                                                                  | 0.9   | 1.0       |          |       |          | 1.5      | 1.3   | 1.5      |          |        |     |
| Bankfull Max Depth (ft)                          | 1.4                                                                  | 1.6   | 1.7       |          |       |          | 3.0      | 2.7   | 3.0      |          |        |     |
| Bankfull Cross-Sectional Area (ft <sup>2</sup> ) | 13.2                                                                 | 13.2  | 13.8      |          |       |          | 29.4     | 29.4  | 28.6     |          |        |     |
| Bankfull Width/Depth Ratio                       | 16.7                                                                 | 16.9  | 15.2      |          |       |          | 13.6     | 17.2  | 13.3     |          |        |     |
| Entrenchment Ratio <sup>1</sup>                  | 10.1                                                                 | 10.0  | 10.4      |          |       |          | N/A      | N/A   | N/A      |          |        |     |
| Bankfull Bank Height Ratio <sup>2</sup>          | 1.0                                                                  | 1.1   | 1.0       |          |       |          | N/A      | N/A   | N/A      |          |        |     |
|                                                  |                                                                      |       |           |          | Ma    | rtin Dai | iry Reac | ch 2  |          |          |        |     |
|                                                  |                                                                      | Cro   | ss-Secti  | on 3 (P  | ool)  |          |          | Cros  | s-Secti  | on 4 (Ri | iffle) |     |
| Dimension and Substrate                          | Base                                                                 | MY1   | MY2       | MY3      | MY5   | MY7      | Base     | MY1   | MY2      | MY3      | MY5    | MY7 |
| Bankfull Elevation (ft)                          | 501.8                                                                | 501.8 | 501.8     |          |       |          | 501.5    | 501.4 | 501.5    |          |        |     |
| Low Bank Elevation (ft)                          | 501.8                                                                | 501.8 | 501.8     |          |       |          | 501.5    | 501.4 | 501.5    |          |        |     |
| Bankfull Width (ft)                              | 20.8                                                                 | 21.3  | 21.0      |          |       |          | 12.8     | 12.4  | 13.0     |          |        |     |
| Floodprone Width (ft)                            | N/A                                                                  | N/A   | N/A       |          |       |          | 200      | 200   | 200      |          |        |     |
| Bankfull Mean Depth (ft)                         | 1.7                                                                  | 1.6   | 1.9       |          |       |          | 1.1      | 1.1   | 1.2      |          |        |     |
| Bankfull Max Depth (ft)                          | 3.5                                                                  | 3.5   | 3.8       |          |       |          | 1.8      | 1.9   | 2.1      |          |        |     |
| Bankfull Cross-Sectional Area (ft <sup>2</sup> ) | 34.9                                                                 | 34.9  | 39.2      |          |       |          | 14.2     | 14.2  | 15.7     |          |        |     |
| Bankfull Width/Depth Ratio                       | 12.4                                                                 | 13.1  | 11.2      |          |       |          | 11.6     | 10.9  | 10.8     |          |        |     |
| Entrenchment Ratio <sup>1</sup>                  | N/A                                                                  | N/A   | N/A       |          |       |          | 15.6     | 16.1  | 15.3     |          |        |     |
| Bankfull Bank Height Ratio <sup>2</sup>          | N/A                                                                  | N/A   | N/A       |          |       |          | 1.0      | 1.0   | 1.1      |          |        |     |
|                                                  |                                                                      |       |           |          |       | U.       | T1       |       |          |          |        |     |
|                                                  |                                                                      | Cros  | s-Section | on 5 (Ri | ffle) |          |          |       |          | ion 6 (P | ool)   |     |
| Dimension and Substrate                          | Base                                                                 | MY1   | MY2       | MY3      | MY5   | MY7      | Base     | MY1   | MY2      | MY3      | MY5    | MY7 |
| Bankfull Elevation (ft)                          | 504.0                                                                | 503.9 | 503.9     |          |       |          | 504.1    | 504.1 | 504.1    |          |        |     |
| Low Bank Elevation (ft)                          | 504.0                                                                | 504.0 | 503.9     |          |       |          | 504.1    | 504.1 | 504.1    |          |        |     |
| Bankfull Width (ft)                              | 9.2                                                                  | 9.5   | 9.7       |          |       |          | 11.5     | 11.9  | 12.3     |          |        |     |
| Floodprone Width (ft)                            | 65                                                                   | 65    | 65        |          |       |          | N/A      | N/A   | N/A      |          |        |     |
| Bankfull Mean Depth (ft)                         | 0.7                                                                  | 0.7   | 0.6       |          |       |          | 1.0      | 1.0   | 1.0      |          |        |     |
| Bankfull Max Depth (ft)                          | 1.4                                                                  | 1.4   | 1.4       |          |       |          | 2.0      | 2.2   | 2.2      |          |        |     |
| Bankfull Cross-Sectional Area (ft <sup>2</sup> ) | 6.3                                                                  | 6.3   | 5.8       |          |       |          | 11.8     | 11.8  | 12.5     |          |        |     |
| Bankfull Width/Depth Ratio                       | 13.3                                                                 | 14.3  | 16.1      |          |       |          | 11.3     | 12.1  | 12.1     |          |        |     |
| Entrenchment Ratio <sup>1</sup>                  | 7.1                                                                  | 6.8   | 6.7       |          |       |          | N/A      | N/A   | N/A      |          |        |     |
| Bankfull Bank Height Ratio <sup>2</sup>          | 1.0                                                                  | 1.1   | <1.0      |          |       |          | N/A      | N/A   | N/A      |          |        |     |

<sup>&</sup>lt;sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width

<sup>&</sup>lt;sup>2</sup>Bank Height Ratio is the bank height divided by the max depth of the bankfull channel \*Mophological survey and analysis not required for MY4 and MY6

## Table 12a. Monitoring Data - Stream Reach Data Summary

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 

## Martin Dairy Reach 1

| Parameter                           | As-Built | /Baseline  | MY1            |     |             | 2          |     | MY3 | IV       | IY5 | I   | MY7 |
|-------------------------------------|----------|------------|----------------|-----|-------------|------------|-----|-----|----------|-----|-----|-----|
|                                     | Min      | Max        | Min M          | ax  | Min         | Max        | Min | Max | Min      | Max | Min | Max |
| Dimension and Substrate - Riffle    |          |            |                |     |             |            |     |     |          |     |     |     |
| Bankfull Width (ft)                 | 1        | 4.8        | 15.0           |     | 14          | 5          |     |     |          |     |     |     |
| Floodprone Width (ft)               | 1        | .50        | 150            |     | 15          | )          |     |     |          |     |     |     |
| Bankfull Mean Depth                 | (        | ).9        | 0.9            |     | 1.          | )          |     |     |          |     |     |     |
| Bankfull Max Depth                  | 1        | 1.4        | 1.6            |     | 1.          | 7          |     |     |          |     |     |     |
| Bankfull Cross-Sectional Area (ft²) |          | 3.2        | 13.2           |     | 13          |            |     |     |          |     |     |     |
| Width/Depth Ratio                   | 1        | 6.7        | 16.9           |     | 15          |            |     |     |          |     |     |     |
| Entrenchment Ratio                  | 1        | 0.1        | 10.0           |     | 10          | 4          |     |     |          |     |     |     |
| Bank Height Ratio                   |          | 1.0        | 1.1            |     | 1.          |            |     |     |          |     |     |     |
| D50 (mm)                            | 1        | 3.1        | 20.6           |     | 32          | 0          |     |     |          |     |     |     |
| Profile                             |          |            |                |     |             |            |     |     |          |     |     |     |
| Riffle Length (ft)                  | 12.0     | 35.9       |                |     |             |            |     |     |          |     |     |     |
| Riffle Slope (ft/ft)                | 0.0039   | 0.0193     |                |     |             |            |     |     |          |     |     |     |
| Pool Length (ft)                    | 38.2     | 77.4       |                |     |             |            |     |     |          |     |     |     |
| Pool Max Depth (ft)                 | 1.4      | 2.5        |                |     |             |            |     |     |          |     |     |     |
| Pool Spacing (ft)                   | 41       | 101        |                |     |             |            |     |     |          |     |     |     |
| Pool Volume (ft <sup>3</sup> )      |          |            |                |     |             |            |     |     |          |     |     |     |
| Pattern                             |          |            |                |     |             |            |     |     |          |     |     |     |
| Channel Beltwidth (ft)              | 36       | 75         |                |     |             |            |     |     |          |     |     |     |
| Radius of Curvature (ft)            | 27       | 75         |                |     |             |            |     |     |          |     |     |     |
| Rc:Bankfull Width (ft/ft)           | 1.8      | 5.0        |                |     |             |            |     |     |          |     |     |     |
| Meander Wave Length (ft)            | 60       | 225        |                |     |             |            |     |     |          |     |     |     |
| Meander Width Ratio                 | 2.4      | 5.0        |                |     |             |            |     |     |          |     |     |     |
| Additional Reach Parameters         |          |            |                |     |             |            |     |     |          |     |     |     |
| Rosgen Classification               | C4       | 1/E4       |                |     |             |            |     |     |          |     |     |     |
| Channel Thalweg Length (ft)         | 7        | 76         |                |     |             |            |     |     |          |     |     |     |
| Sinuosity (ft)                      | 1        | .27        |                |     |             |            |     |     |          |     |     |     |
| Water Surface Slope (ft/ft)         | 0.0      | 0046       |                |     |             |            |     |     |          |     |     |     |
| Bankfull Slope (ft/ft)              | 0.       | 005        |                |     |             |            |     |     |          |     |     |     |
| Ri%/Ru%/P%/G%/S%                    |          |            |                |     |             |            |     |     |          |     |     |     |
| SC%/Sa%/G%/C%/B%/Be%                |          |            |                |     |             |            |     |     |          |     |     |     |
| d16/d35/d50/d84/d95/d100            |          | /2.8/21.8/ | SC/0.18/14.6/4 | 5.0 | SC/1.0/6.8/ | 37.9/69.7/ |     | ·   |          |     |     |     |
| 010/035/050/084/095/0100            | 45.0,    | /128.0     | 68.5/128.0     |     | 18          | )          |     |     | <u> </u> |     |     |     |
| % of Reach with Eroding Banks       | (        | 0%         | 0%             |     | 09          | ó          |     |     |          |     |     |     |

<sup>(---):</sup> Data was not provided

<sup>\*</sup>Morphological survey and analysis not required during MY4 and MY6

## Table 12b. Monitoring Data - Stream Reach Data Summary

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 

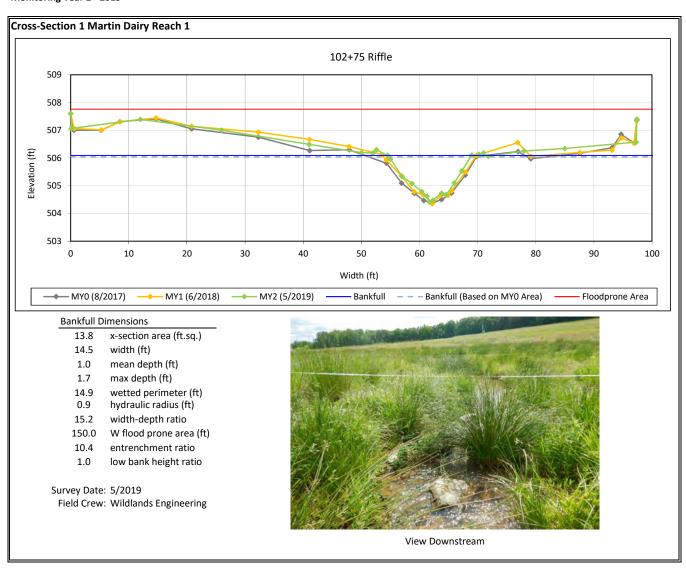
## Martin Dairy Reach 2

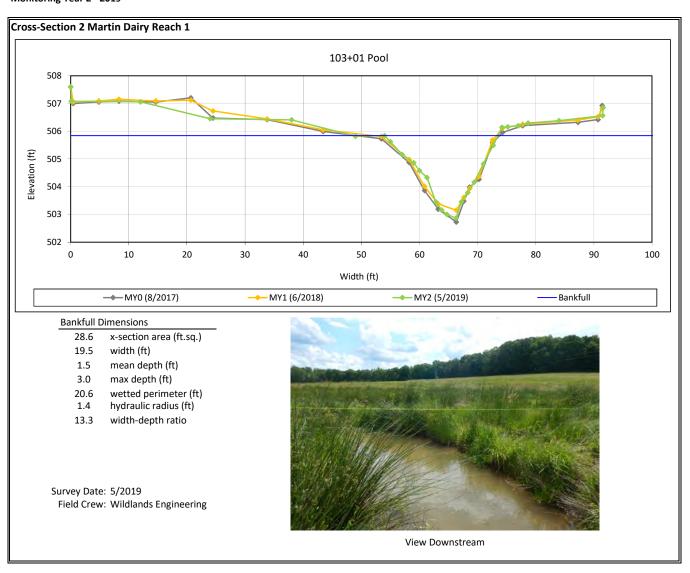
| Parameter                                        | As-Built  | :/Baseline  | MY1             |         | MY           | ?         |     | MY3 | IV  | IY5 | IV  | /IY7 |
|--------------------------------------------------|-----------|-------------|-----------------|---------|--------------|-----------|-----|-----|-----|-----|-----|------|
|                                                  | Min       | Max         | Min             | Max     | Min          | Max       | Min | Max | Min | Max | Min | Max  |
| Dimension and Substrate - Riffle                 |           |             |                 |         |              |           |     |     |     |     |     |      |
| Bankfull Width (ft)                              | 1         | 2.8         | 12.4            |         | 13.0         | )         |     |     |     |     |     |      |
| Floodprone Width (ft)                            | 2         | 200         | 200             |         | 200          |           |     |     |     |     |     |      |
| Bankfull Mean Depth                              | :         | 1.1         | 1.1             |         | 1.2          |           |     |     |     |     |     |      |
| Bankfull Max Depth                               | :         | 1.8         | 1.9             |         | 2.1          |           |     |     |     |     |     |      |
| Bankfull Cross-Sectional Area (ft <sup>2</sup> ) | 1         | 4.2         | 14.2            |         | 15.7         | '         |     |     |     |     |     |      |
| Width/Depth Ratio                                | 1         | 1.6         | 10.9            |         | 10.8         | }         |     |     |     |     |     |      |
| Entrenchment Ratio                               | 1         | 5.6         | 16.1            |         | 15.3         | }         |     |     |     |     |     |      |
| Bank Height Ratio                                | :         | 1.0         | 1.0             |         | 1.1          |           |     |     |     |     |     |      |
| D50 (mm)                                         | 1         | 0.2         | 38.7            |         | 40.8         | 3         |     |     |     |     |     |      |
| Profile                                          |           |             |                 |         |              |           |     |     |     |     |     |      |
| Riffle Length (ft)                               | 16.7      | 51.0        |                 |         |              |           |     |     |     |     |     |      |
| Riffle Slope (ft/ft)                             | 0.0166    | 0.0266      | Ī               |         |              |           |     |     |     |     |     |      |
| Pool Length (ft)                                 | 36.1      | 83.1        |                 |         |              |           |     |     |     |     |     |      |
| Pool Max Depth (ft)                              | 1.1       | 1.9         |                 |         |              |           |     |     |     |     |     |      |
| Pool Spacing (ft)                                | 55        | 111         | Ī               |         |              |           |     |     |     |     |     |      |
| Pool Volume (ft <sup>3</sup> )                   |           |             |                 |         |              |           |     |     |     |     |     |      |
| Pattern                                          |           |             |                 |         |              |           |     |     |     |     |     |      |
| Channel Beltwidth (ft)                           | 39        | 81          |                 |         |              |           |     |     |     |     |     |      |
| Radius of Curvature (ft)                         | 29        | 81          |                 |         |              |           |     |     |     |     |     |      |
| Rc:Bankfull Width (ft/ft)                        | 1.8       | 5.0         |                 |         |              |           |     |     |     |     |     |      |
| Meander Wave Length (ft)                         | 65        | 243         | Ĭ               |         |              |           |     |     |     |     |     |      |
| Meander Width Ratio                              | 2.4       | 5.0         |                 |         |              |           |     |     |     |     |     |      |
| Additional Reach Parameters                      |           |             |                 |         |              |           |     |     |     |     |     |      |
| Rosgen Classification                            | C4        | 1/E4        |                 |         |              |           |     |     |     |     |     |      |
| Channel Thalweg Length (ft)                      | 1,        | 258         |                 |         |              |           |     |     |     |     |     |      |
| Sinuosity (ft)                                   | 1         | .22         |                 |         |              |           |     |     |     |     |     |      |
| Water Surface Slope (ft/ft)                      | 0.0       | 0072        | Ĭ               |         |              |           |     |     |     |     |     |      |
| Bankfull Slope (ft/ft)                           | 0.        | 007         | Ĭ               |         |              |           |     |     |     |     |     |      |
| Ri%/Ru%/P%/G%/S%                                 |           |             |                 |         |              |           |     |     |     |     |     |      |
| SC%/Sa%/G%/C%/B%/Be%                             |           |             |                 |         |              |           |     |     |     |     |     |      |
| 41 C / 42 E / 4 E O / 40 4 / 40 E / 44 0 O       | 0.11/1.10 | )/5.0/27.6/ | 0.55/13.27/24.7 | 7/68.5/ | 0.16/4.58/10 | ).5/84.1/ |     |     |     |     |     |      |
| d16/d35/d50/d84/d95/d100                         | 64.0      | /512.0      | 104.7/180.      | .0      | 160.7/       | 512       |     |     |     |     |     |      |
| % of Reach with Eroding Banks                    | (         | 0%          | 0%              |         | 0%           |           |     |     |     |     |     |      |
| / ). Data ast associated                         |           |             |                 |         |              |           |     |     |     |     | *   |      |

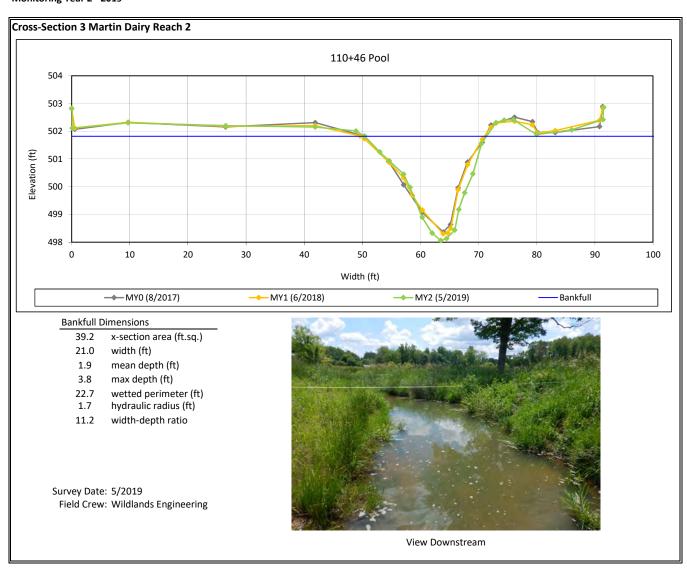
<sup>(---):</sup> Data was not provided

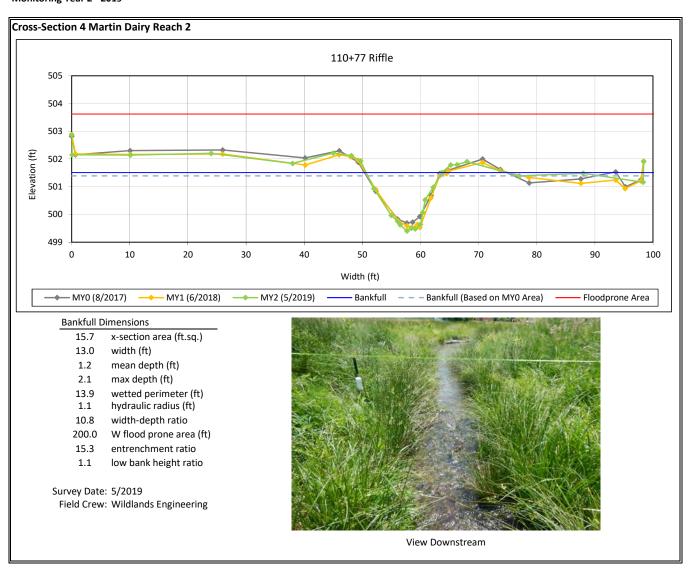
<sup>\*</sup>Morphological survey and analysis not required during MY4 and MY6

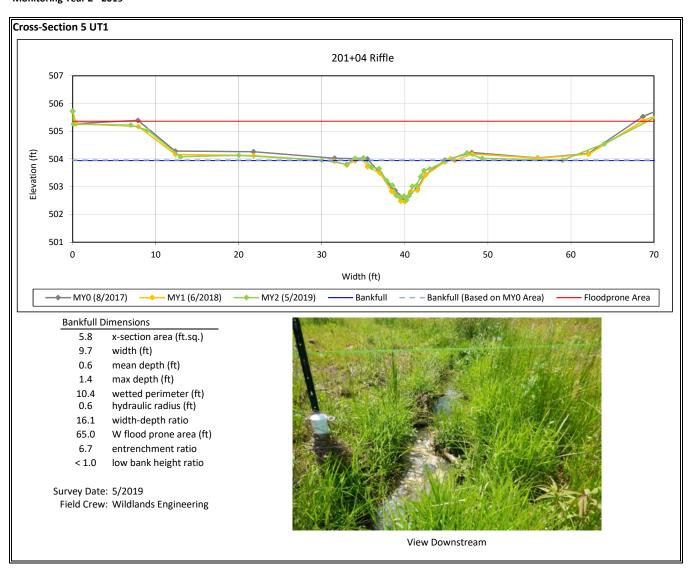
Table 12c. Monitoring Data - Stream Reach Data Summary

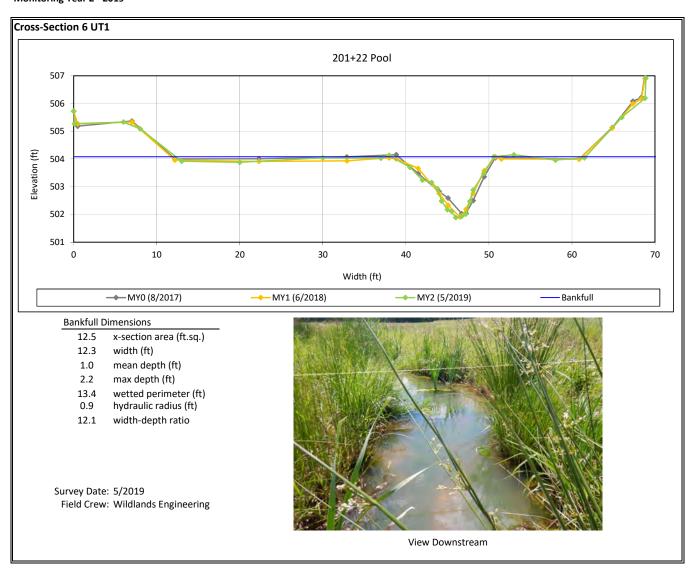

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 


## UT1


| Parameter                                        | As-Built | :/Baseline            | MY                   | ΛY1 |                    | <b>'2</b> |     | MY3 | IV  | 1Y5 | I   | MY7 |
|--------------------------------------------------|----------|-----------------------|----------------------|-----|--------------------|-----------|-----|-----|-----|-----|-----|-----|
|                                                  | Min      | Max                   | Min                  | Max | Min                | Max       | Min | Max | Min | Max | Min | Max |
| Dimension and Substrate - Riffle                 |          |                       |                      |     |                    |           |     |     |     |     |     |     |
| Bankfull Width (ft)                              | Ç        | 9.2                   | 9.                   | 5   | 9.                 | 7         |     |     |     |     |     |     |
| Floodprone Width (ft)                            | (        | 65                    | 65                   | 5   | 6!                 | ;         |     |     |     |     |     |     |
| Bankfull Mean Depth                              |          | 0.7                   | 0.                   |     | 0.                 |           |     |     |     |     |     |     |
| Bankfull Max Depth                               | 1        | 1.4                   | 1.4                  | 4   | 1.                 | 4         |     |     |     |     |     |     |
| Bankfull Cross-Sectional Area (ft <sup>2</sup> ) | (        | 5.3                   | 6.3                  | 3   | 5.                 | 3         |     |     |     |     |     |     |
| Width/Depth Ratio                                | 1        | 3.3                   | 14.                  | .3  | 16                 | 1         |     |     |     |     |     |     |
| Entrenchment Ratio                               | 7        | 7.1                   | 6.8                  | 8   | 6.                 | 7         |     |     |     |     |     |     |
| Bank Height Ratio                                |          | 1.0                   | 1.:                  | 1   | <1                 | 0         |     |     |     |     |     |     |
| D50 (mm)                                         | 7        | 7.4                   | 72.                  | .1  | 14                 | 6         |     |     |     |     |     |     |
| Profile                                          |          |                       |                      |     |                    |           |     |     |     |     |     |     |
| Riffle Length (ft)                               | 4        | 28                    |                      |     |                    |           |     |     |     |     |     |     |
| Riffle Slope (ft/ft)                             | 0.009    | 0.016                 |                      |     |                    |           |     |     |     |     |     |     |
| Pool Length (ft)                                 | 4.2      | 34.9                  |                      |     |                    |           |     |     |     |     |     |     |
| Pool Max Depth (ft)                              | 0.4      | 1.3                   |                      |     |                    |           |     |     |     |     |     |     |
| Pool Spacing (ft)                                | 30       | 73                    |                      |     |                    |           |     |     |     |     |     |     |
| Pool Volume (ft <sup>3</sup> )                   |          |                       |                      |     |                    |           |     |     |     |     |     |     |
| Pattern                                          |          |                       |                      |     |                    |           |     |     |     |     |     |     |
| Channel Beltwidth (ft)                           | 23       | 66                    |                      |     |                    |           |     |     |     |     |     |     |
| Radius of Curvature (ft)                         | 17       | 52                    |                      |     |                    |           |     |     |     |     |     |     |
| Rc:Bankfull Width (ft/ft)                        | 1.8      | 5.5                   |                      |     |                    |           |     |     |     |     |     |     |
| Meander Wave Length (ft)                         | 56       | 155                   |                      |     |                    |           |     |     |     |     |     |     |
| Meander Width Ratio                              | 2.4      | 7.0                   |                      |     |                    |           |     |     |     |     |     |     |
| Additional Reach Parameters                      |          |                       |                      |     |                    |           |     |     |     |     |     |     |
| Rosgen Classification                            |          | 1/E4                  |                      |     |                    |           |     |     |     |     |     |     |
| Channel Thalweg Length (ft)                      |          | 213                   |                      |     |                    |           |     |     |     |     |     |     |
| Sinuosity (ft)                                   |          | 1.1                   |                      |     |                    |           |     |     |     |     |     |     |
| Water Surface Slope (ft/ft)                      | 0.0      | 0072                  |                      |     |                    |           |     |     |     |     |     |     |
| Bankfull Slope (ft/ft)                           | 0.0      | 0103                  |                      |     |                    |           |     |     |     |     |     |     |
| Ri%/Ru%/P%/G%/S%                                 |          |                       |                      |     |                    |           |     |     |     |     |     |     |
| SC%/Sa%/G%/C%/B%/Be%                             |          |                       |                      |     |                    |           |     |     |     |     |     |     |
| d16/d35/d50/d84/d95/d100                         |          | 3/7.3/20.1/<br>9/64.0 | SC/9.38/2:<br>128.0/ |     | SC/0.09/4.3,<br>90 |           |     |     |     |     |     |     |
| % of Reach with Eroding Banks                    |          | 0%                    | 0%                   | %   | 09                 | 6         |     |     |     |     |     |     |
|                                                  |          |                       |                      |     |                    |           |     |     | +   |     |     |     |


<sup>(---):</sup> Data was not provided


<sup>\*</sup>Morphological survey and analysis not required during MY4 and MY6



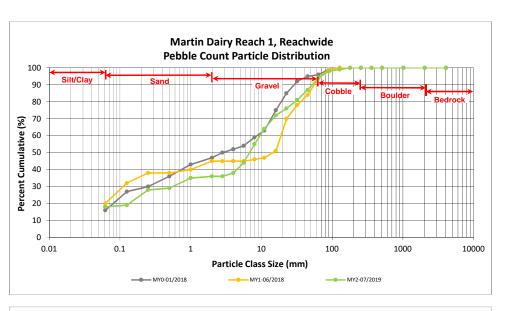


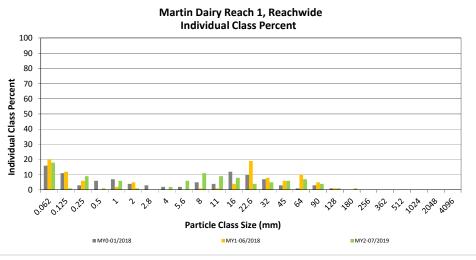










Martin Dairy Mitigation Site DMS Project No. 97087


Monitoring Year 2 - 2019

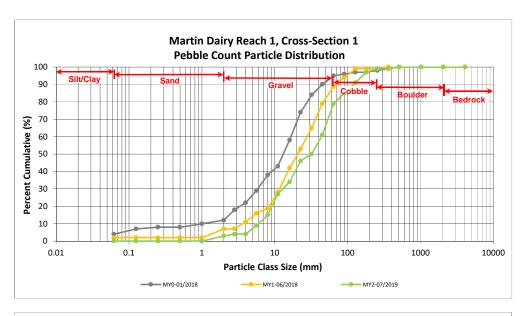
Martin Dairy Reach 1, Reachwide

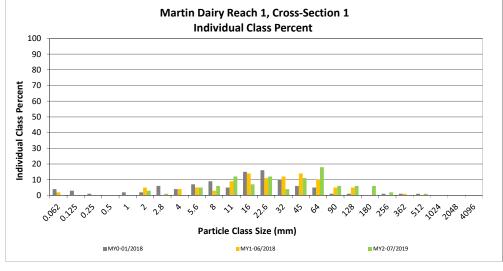
|             |                  | Diame | ter (mm) | Pa     | rticle Co | unt   | Reach S    | ummary     |
|-------------|------------------|-------|----------|--------|-----------|-------|------------|------------|
| Par         | ticle Class      |       |          |        |           |       | Class      | Percent    |
|             |                  | min   | max      | Riffle | Pool      | Total | Percentage | Cumulative |
| SILT/CLAY   | Silt/Clay        | 0.000 | 0.062    |        | 18        | 18    | 18         | 18         |
|             | Very fine        | 0.062 | 0.125    |        | 1         | 1     | 1          | 19         |
| _           | Fine             | 0.125 | 0.250    |        | 9         | 9     | 9          | 28         |
| SAND        | Medium           | 0.25  | 0.50     |        | 1         | 1     | 1          | 29         |
| יכ          | Coarse           | 0.5   | 1.0      |        | 6         | 6     | 6          | 35         |
|             | Very Coarse      | 1.0   | 2.0      | 1      |           | 1     | 1          | 36         |
|             | Very Fine        | 2.0   | 2.8      |        |           |       |            | 36         |
|             | Very Fine        | 2.8   | 4.0      |        | 2         | 2     | 2          | 38         |
|             | Fine             | 4.0   | 5.6      | 5      | 1         | 6     | 6          | 44         |
|             | Fine             | 5.6   | 8.0      | 7      | 4         | 11    | 11         | 55         |
| JEL         | Medium           | 8.0   | 11.0     | 9      |           | 9     | 9          | 64         |
| GRAVEL      | Medium           | 11.0  | 16.0     | 7      | 1         | 8     | 8          | 72         |
| -           | Coarse           | 16.0  | 22.6     | 3      | 1         | 4     | 4          | 76         |
|             | Coarse           | 22.6  | 32       | 3      | 2         | 5     | 5          | 81         |
|             | Very Coarse      | 32    | 45       | 6      |           | 6     | 6          | 87         |
|             | Very Coarse      | 45    | 64       | 5      | 2         | 7     | 7          | 94         |
|             | Small            | 64    | 90       | 3      | 1         | 4     | 4          | 98         |
| COBBLE      | Small            | 90    | 128      |        | 1         | 1     | 1          | 99         |
| CORE        | Large            | 128   | 180      | 1      |           | 1     | 1          | 100        |
| -           | Large            | 180   | 256      |        |           |       |            | 100        |
|             | Small            | 256   | 362      |        |           |       |            | 100        |
| , DER       | Small            | 362   | 512      |        |           |       |            | 100        |
| BOULDER     | Medium           | 512   | 1024     |        |           |       |            | 100        |
| •           | Large/Very Large | 1024  | 2048     |        |           |       |            | 100        |
| BEDROCK     | Bedrock          | 2048  | >2048    |        |           |       | _          | 100        |
| <del></del> |                  |       | Total    | 50     | 50        | 100   | 100        | 100        |

| Reachwide          |                   |  |  |  |  |  |  |  |  |  |
|--------------------|-------------------|--|--|--|--|--|--|--|--|--|
| Chann              | el materials (mm) |  |  |  |  |  |  |  |  |  |
| D <sub>16</sub> =  | Silt/Clay         |  |  |  |  |  |  |  |  |  |
| D <sub>35</sub> =  | 1.00              |  |  |  |  |  |  |  |  |  |
| D <sub>50</sub> =  | 6.8               |  |  |  |  |  |  |  |  |  |
| D <sub>84</sub> =  | 37.9              |  |  |  |  |  |  |  |  |  |
| D <sub>95</sub> =  | 69.7              |  |  |  |  |  |  |  |  |  |
| D <sub>100</sub> = | 180.0             |  |  |  |  |  |  |  |  |  |






Martin Dairy Mitigation Site DMS Project No. 97087


Monitoring Year 2 - 2019

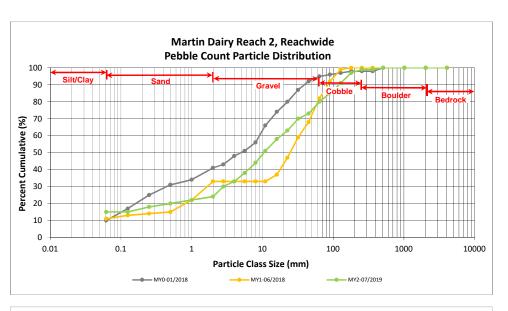
Martin Dairy Reach 1, Cross-Section 1

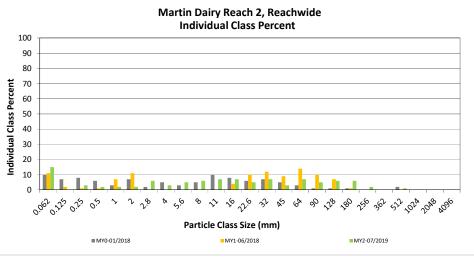
|           |                  | Diame | ter (mm) |                  | Sum        | mary       |
|-----------|------------------|-------|----------|------------------|------------|------------|
| Par       | ticle Class      |       |          | Riffle 100-Count | Class      | Percent    |
|           |                  | min   | max      |                  | Percentage | Cumulative |
| SILT/CLAY | Silt/Clay        | 0.000 | 0.062    |                  |            | 0          |
|           | Very fine        | 0.062 | 0.125    |                  |            | 0          |
| _         | Fine             | 0.125 | 0.250    |                  |            | 0          |
| SAND      | Medium           | 0.25  | 0.50     |                  |            | 0          |
| יכ        | Coarse           | 0.5   | 1.0      |                  |            | 0          |
|           | Very Coarse      | 1.0   | 2.0      | 3                | 3          | 3          |
|           | Very Fine        | 2.0   | 2.8      | 1                | 1          | 4          |
|           | Very Fine        | 2.8   | 4.0      |                  |            | 4          |
|           | Fine             | 4.0   | 5.6      | 5                | 5          | 9          |
|           | Fine             | 5.6   | 8.0      | 6                | 6          | 15         |
| JEL       | Medium           | 8.0   | 11.0     | 12               | 12         | 27         |
| GRAVEL    | Medium           | 11.0  | 16.0     | 7                | 7          | 34         |
|           | Coarse           | 16.0  | 22.6     | 12               | 12         | 46         |
|           | Coarse           | 22.6  | 32       | 4                | 4          | 50         |
|           | Very Coarse      | 32    | 45       | 11               | 11         | 61         |
|           | Very Coarse      | 45    | 64       | 18               | 18         | 79         |
|           | Small            | 64    | 90       | 6                | 6          | 85         |
| COBBLE    | Small            | 90    | 128      | 6                | 6          | 91         |
| COBL      | Large            | 128   | 180      | 6                | 6          | 97         |
| _         | Large            | 180   | 256      | 2                | 2          | 99         |
|           | Small            | 256   | 362      |                  |            | 99         |
| BOULDER   | Small            | 362   | 512      | 1                | 1          | 100        |
| COULT     | Medium           | 512   | 1024     |                  |            | 100        |
| V         | Large/Very Large | 1024  | 2048     |                  | •          | 100        |
| BEDROCK   | Bedrock          | 2048  | >2048    |                  |            | 100        |
|           |                  |       | Total    | 100              | 100        | 100        |

| Cross-Section 1        |       |  |  |  |  |
|------------------------|-------|--|--|--|--|
| Channel materials (mm) |       |  |  |  |  |
| D <sub>16</sub> = 8.22 |       |  |  |  |  |
| D <sub>35</sub> =      | 16.47 |  |  |  |  |
| D <sub>50</sub> =      | 32.0  |  |  |  |  |
| D <sub>84</sub> =      | 85.0  |  |  |  |  |
| D <sub>95</sub> =      | 160.7 |  |  |  |  |
| D <sub>100</sub> =     | 512.0 |  |  |  |  |






Martin Dairy Mitigation Site DMS Project No. 97087


Monitoring Year 2 - 2019

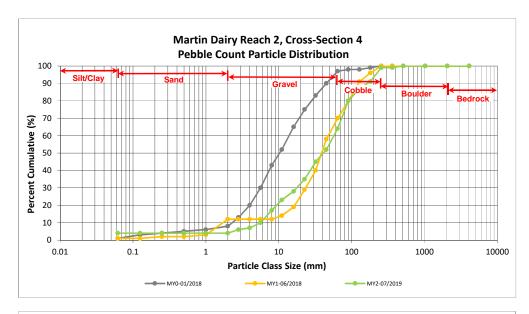
Martin Dairy Reach 2, Reachwide

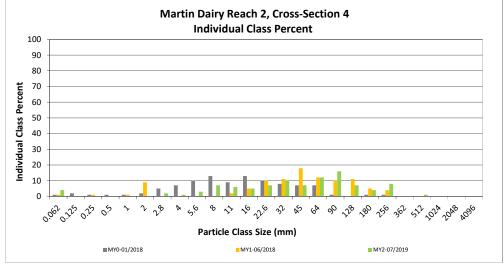
|                |                  | Diame | ter (mm) | Pa     | rticle Co | unt   | Reach S    | ummary     |
|----------------|------------------|-------|----------|--------|-----------|-------|------------|------------|
| Particle Class |                  |       |          |        |           |       | Class      | Percent    |
|                |                  | min   | max      | Riffle | Pool      | Total | Percentage | Cumulative |
| SILT/CLAY      | Silt/Clay        | 0.000 | 0.062    | 1      | 14        | 15    | 15         | 15         |
|                | Very fine        | 0.062 | 0.125    |        |           |       |            | 15         |
| •              | Fine             | 0.125 | 0.250    |        | 3         | 3     | 3          | 18         |
| SAND           | Medium           | 0.25  | 0.50     | 1      | 1         | 2     | 2          | 20         |
| ٦,             | Coarse           | 0.5   | 1.0      |        | 2         | 2     | 2          | 22         |
|                | Very Coarse      | 1.0   | 2.0      |        | 2         | 2     | 2          | 24         |
|                | Very Fine        | 2.0   | 2.8      | 2      | 4         | 6     | 6          | 30         |
|                | Very Fine        | 2.8   | 4.0      |        | 3         | 3     | 3          | 33         |
|                | Fine             | 4.0   | 5.6      | 1      | 4         | 5     | 5          | 38         |
|                | Fine             | 5.6   | 8.0      | 3      | 3         | 6     | 6          | 44         |
| YEL            | Medium           | 8.0   | 11.0     | 2      | 5         | 7     | 7          | 51         |
| GRAVEL         | Medium           | 11.0  | 16.0     | 5      | 2         | 7     | 7          | 58         |
|                | Coarse           | 16.0  | 22.6     | 4      | 1         | 5     | 5          | 63         |
|                | Coarse           | 22.6  | 32       | 3      | 4         | 7     | 7          | 70         |
|                | Very Coarse      | 32    | 45       | 2      | 1         | 3     | 3          | 73         |
|                | Very Coarse      | 45    | 64       | 7      |           | 7     | 7          | 80         |
|                | Small            | 64    | 90       | 5      |           | 5     | 5          | 85         |
| COBBLE         | Small            | 90    | 128      | 5      | 1         | 6     | 6          | 91         |
| CORE           | Large            | 128   | 180      | 6      |           | 6     | 6          | 97         |
|                | Large            | 180   | 256      | 2      |           | 2     | 2          | 99         |
|                | Small            | 256   | 362      |        |           |       |            | 99         |
| BOULDER        | Small            | 362   | 512      | 1      |           | 1     | 1          | 100        |
| gonr.          | Medium           | 512   | 1024     |        |           |       |            | 100        |
| •              | Large/Very Large | 1024  | 2048     |        |           |       |            | 100        |
| BEDROCK        | Bedrock          | 2048  | >2048    |        |           |       |            | 100        |
|                |                  | -     | Total    | 50     | 50        | 100   | 100        | 100        |

| Reachwide              |       |  |  |  |  |
|------------------------|-------|--|--|--|--|
| Channel materials (mm) |       |  |  |  |  |
| D <sub>16</sub> = 0.16 |       |  |  |  |  |
| D <sub>35</sub> =      | 4.58  |  |  |  |  |
| D <sub>50</sub> =      | 10.5  |  |  |  |  |
| D <sub>84</sub> =      | 84.1  |  |  |  |  |
| D <sub>95</sub> =      | 160.7 |  |  |  |  |
| D <sub>100</sub> =     | 512.0 |  |  |  |  |






Martin Dairy Mitigation Site DMS Project No. 97087


Monitoring Year 2 - 2019

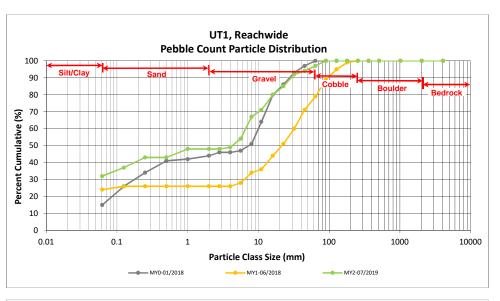
Martin Dairy Reach 2, Cross-Section 4

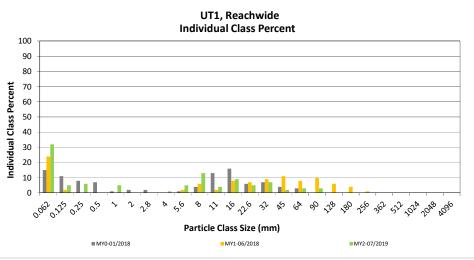
|                |                  | Diame | ter (mm) |                  | Sum        | mary       |
|----------------|------------------|-------|----------|------------------|------------|------------|
| Particle Class |                  |       |          | Riffle 100-Count | Class      | Percent    |
|                |                  | min   | max      |                  | Percentage | Cumulative |
| SILT/CLAY      | Silt/Clay        | 0.000 | 0.062    | 4                | 4          | 4          |
|                | Very fine        | 0.062 | 0.125    |                  |            | 4          |
| _              | Fine             | 0.125 | 0.250    |                  |            | 4          |
| SAND           | Medium           | 0.25  | 0.50     |                  |            | 4          |
| יכ             | Coarse           | 0.5   | 1.0      |                  |            | 4          |
|                | Very Coarse      | 1.0   | 2.0      |                  |            | 4          |
|                | Very Fine        | 2.0   | 2.8      | 2                | 2          | 6          |
|                | Very Fine        | 2.8   | 4.0      | 1                | 1          | 7          |
|                | Fine             | 4.0   | 5.6      | 3                | 3          | 10         |
|                | Fine             | 5.6   | 8.0      | 7                | 7          | 17         |
| JEL            | Medium           | 8.0   | 11.0     | 6                | 6          | 23         |
| GRAVEL         | Medium           | 11.0  | 16.0     | 5                | 5          | 28         |
| -              | Coarse           | 16.0  | 22.6     | 7                | 7          | 35         |
|                | Coarse           | 22.6  | 32       | 10               | 10         | 45         |
|                | Very Coarse      | 32    | 45       | 7                | 7          | 52         |
|                | Very Coarse      | 45    | 64       | 12               | 12         | 64         |
|                | Small            | 64    | 90       | 16               | 16         | 80         |
| COBBLE         | Small            | 90    | 128      | 7                | 7          | 87         |
| COBL           | Large            | 128   | 180      | 4                | 4          | 91         |
| -              | Large            | 180   | 256      | 8                | 8          | 99         |
|                | Small            | 256   | 362      |                  |            | 99         |
| BOULDER        | Small            | 362   | 512      | 1                | 1          | 100        |
| aoult          | Medium           | 512   | 1024     |                  |            | 100        |
| V              | Large/Very Large | 1024  | 2048     |                  |            | 100        |
| BEDROCK        | Bedrock          | 2048  | >2048    |                  |            | 100        |
|                |                  |       | Total    | 100              | 100        | 100        |

| Cross-Section 4        |                        |  |  |  |  |
|------------------------|------------------------|--|--|--|--|
| Ch                     | Channel materials (mm) |  |  |  |  |
| D <sub>16</sub> = 7.60 |                        |  |  |  |  |
| D <sub>35</sub> =      | 22.60                  |  |  |  |  |
| D <sub>50</sub> =      | 40.8                   |  |  |  |  |
| D <sub>84</sub> =      | 110.1                  |  |  |  |  |
| D <sub>95</sub> =      | 214.7                  |  |  |  |  |
| D <sub>100</sub> =     | 512.0                  |  |  |  |  |






Martin Dairy Mitigation Site DMS Project No. 97087

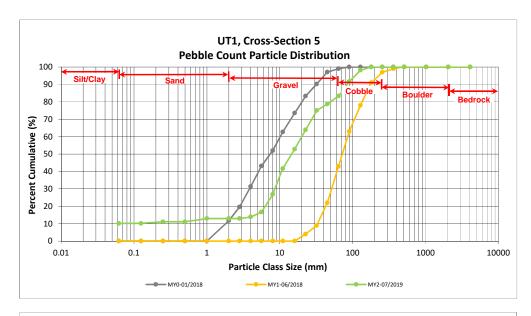

Monitoring Year 2 - 2019

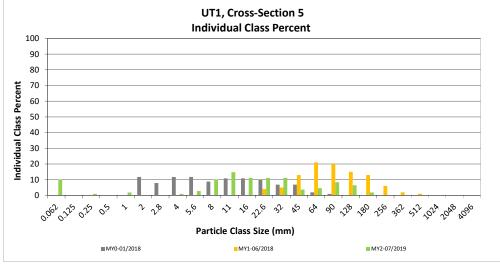
UT1, Reachwide

|                |                  | Diame | ter (mm) | Pa     | rticle Co | unt   | Reach S    | ummary     |
|----------------|------------------|-------|----------|--------|-----------|-------|------------|------------|
| Particle Class |                  |       |          |        |           |       | Class      | Percent    |
|                |                  | min   | max      | Riffle | Pool      | Total | Percentage | Cumulative |
| SILT/CLAY      | Silt/Clay        | 0.000 | 0.062    | 1      | 31        | 32    | 32         | 32         |
|                | Very fine        | 0.062 | 0.125    |        | 5         | 5     | 5          | 37         |
|                | Fine             | 0.125 | 0.250    | 2      | 4         | 6     | 6          | 43         |
| SAND           | Medium           | 0.25  | 0.50     |        |           |       |            | 43         |
| יכ             | Coarse           | 0.5   | 1.0      | 1      | 4         | 5     | 5          | 48         |
|                | Very Coarse      | 1.0   | 2.0      |        |           |       |            | 48         |
|                | Very Fine        | 2.0   | 2.8      |        |           |       |            | 48         |
|                | Very Fine        | 2.8   | 4.0      |        | 1         | 1     | 1          | 49         |
|                | Fine             | 4.0   | 5.6      | 3      | 2         | 5     | 5          | 54         |
|                | Fine             | 5.6   | 8.0      | 10     | 3         | 13    | 13         | 67         |
| NEL            | Medium           | 8.0   | 11.0     | 4      |           | 4     | 4          | 71         |
| GRAVEL         | Medium           | 11.0  | 16.0     | 9      |           | 9     | 9          | 80         |
| -              | Coarse           | 16.0  | 22.6     | 5      |           | 5     | 5          | 85         |
|                | Coarse           | 22.6  | 32       | 7      |           | 7     | 7          | 92         |
|                | Very Coarse      | 32    | 45       | 2      |           | 2     | 2          | 94         |
|                | Very Coarse      | 45    | 64       | 3      |           | 3     | 3          | 97         |
|                | Small            | 64    | 90       | 3      |           | 3     | 3          | 100        |
| COBBLE         | Small            | 90    | 128      |        |           |       |            | 100        |
| COST           | Large            | 128   | 180      |        |           |       |            | 100        |
| _              | Large            | 180   | 256      |        |           |       |            | 100        |
|                | Small            | 256   | 362      |        |           |       |            | 100        |
| BOULDER        | Small            | 362   | 512      |        |           |       |            | 100        |
|                | Medium           | 512   | 1024     |        |           |       |            | 100        |
| V              | Large/Very Large | 1024  | 2048     |        |           |       |            | 100        |
| BEDROCK        | Bedrock          | 2048  | >2048    |        |           |       |            | 100        |
|                |                  |       | Total    | 50     | 50        | 100   | 100        | 100        |

| Reachwide                   |      |  |  |  |  |
|-----------------------------|------|--|--|--|--|
| Channel materials (mm)      |      |  |  |  |  |
| D <sub>16</sub> = Silt/Clay |      |  |  |  |  |
| D <sub>35</sub> =           | 0.09 |  |  |  |  |
| D <sub>50</sub> =           | 4.3  |  |  |  |  |
| D <sub>84</sub> =           | 21.1 |  |  |  |  |
| D <sub>95</sub> =           | 50.6 |  |  |  |  |
| D <sub>100</sub> =          | 90.0 |  |  |  |  |







Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 


UT1, Cross-Section 5

| Particle Class |                  | Diameter (mm) |       |                  | Summary    |            |  |
|----------------|------------------|---------------|-------|------------------|------------|------------|--|
|                |                  |               |       | Riffle 100-Count | Class      | Percent    |  |
|                |                  | min           | max   |                  | Percentage | Cumulative |  |
| SILT/CLAY      | Silt/Clay        | 0.000         | 0.062 | 11               | 10         | 10         |  |
|                | Very fine        | 0.062         | 0.125 |                  |            | 10         |  |
|                | Fine             | 0.125         | 0.250 | 1                | 1          | 11         |  |
| SAND           | Medium           | 0.25          | 0.50  |                  |            | 11         |  |
| יכ             | Coarse           | 0.5           | 1.0   | 2                | 2          | 13         |  |
|                | Very Coarse      | 1.0           | 2.0   |                  |            | 13         |  |
|                | Very Fine        | 2.0           | 2.8   |                  |            | 13         |  |
|                | Very Fine        | 2.8           | 4.0   | 1                | 1          | 14         |  |
|                | Fine             | 4.0           | 5.6   | 3                | 3          | 17         |  |
|                | Fine             | 5.6           | 8.0   | 11               | 10         | 27         |  |
| JEL            | Medium           | 8.0           | 11.0  | 16               | 15         | 42         |  |
| GRAVEL         | Medium           | 11.0          | 16.0  | 12               | 11         | 53         |  |
|                | Coarse           | 16.0          | 22.6  | 12               | 11         | 64         |  |
|                | Coarse           | 22.6          | 32    | 12               | 11         | 75         |  |
|                | Very Coarse      | 32            | 45    | 4                | 4          | 79         |  |
|                | Very Coarse      | 45            | 64    | 5                | 5          | 83         |  |
|                | Small            | 64            | 90    | 9                | 8          | 92         |  |
| ALE            | Small            | 90            | 128   | 7                | 6          | 98         |  |
| COBBLE         | Large            | 128           | 180   | 2                | 2          | 100        |  |
|                | Large            | 180           | 256   |                  |            | 100        |  |
|                | Small            | 256           | 362   |                  |            | 100        |  |
| BOULDER        | Small            | 362           | 512   |                  | ·          | 100        |  |
| goul           | Medium           | 512           | 1024  |                  |            | 100        |  |
| v              | Large/Very Large | 1024          | 2048  |                  |            | 100        |  |
| BEDROCK        | Bedrock          | 2048          | >2048 |                  |            | 100        |  |
|                |                  | ·             | Total | 108              | 100        | 100        |  |

| Cross-Section 5        |       |  |  |  |
|------------------------|-------|--|--|--|
| Channel materials (mm) |       |  |  |  |
| D <sub>16</sub> =      | 5.17  |  |  |  |
| D <sub>35</sub> =      | 9.53  |  |  |  |
| D <sub>50</sub> =      | 14.6  |  |  |  |
| D <sub>84</sub> =      | 65.8  |  |  |  |
| D <sub>95</sub> =      | 107.9 |  |  |  |
| D <sub>100</sub> =     | 180.0 |  |  |  |

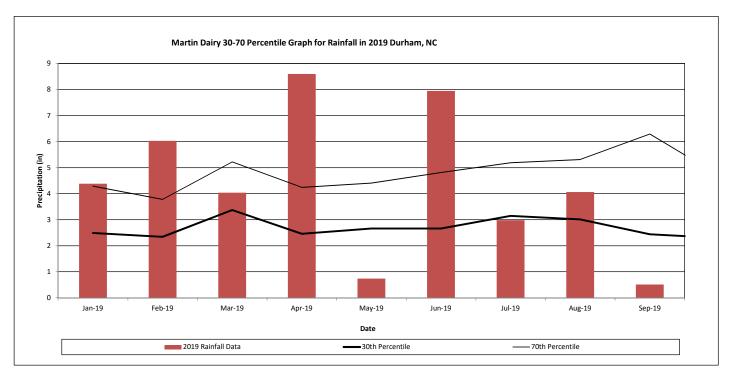






**Table 13. Verification of Bankfull Events** 

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 


|                   | M            | Y1         | M            |            |             |
|-------------------|--------------|------------|--------------|------------|-------------|
| Reach             | Date of Data | Date of    | Date of Data | Date of    | Method      |
| Reacti            | Collection   | Occurrence | Collection   | Occurrence | Wethou      |
| Martin Diary      | 6/6/2018     | 4/15/2018  | 7/18/2019    | 4/13/2019  |             |
| Iviai tili Diai y | 10/17/2018   | 9/17/2018* | 7/10/2019    | 6/19/2019  | Crest Gage/ |
|                   | 6/6/2018     | 4/15/2018  |              | 3/24/2019  | Pressure    |
| UT1               | 10/17/2018   | 7/6/2018   | 7/18/2019    | 4/12/2019  | Transducer  |
|                   | 10/1//2018   | 9/17/2018* |              | 6/19/2019  |             |

<sup>\*</sup>Hurricane Florence

#### **Monthly Rainfall Data**

Martin Dairy Mitigation Site DMS Project No. 97087

Monitoring Year 2 - 2019



 $<sup>^{1}</sup>$  2019 monthly rainfall from USDA Station Durham 11 W

 $<sup>^{2}</sup>$  30th and 70th percentile rainfall data collected from weather station Chapel Hill 2 W, NC (USDA, 2019).







# MONITORING YEAR 2 ANNUAL REPORT Final

## **MARTIN DAIRY BUFFER MITIGATION SITE**

Orange County, NC NCDEQ Contract No. 006831 DMS Project Number 97087 NCDWR Project Number 2016-0366

Data Collection Period: September 2019 Draft Submission Date: October 21, 2019 Final Submission Date: December 17, 2019

## PREPARED FOR:



NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652



# Wildlands Engineering, Inc. 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

Jason Lorch

jlorch@wildlandseng.com Phone: (919) 851-9986

## MARTIN DAIRY BUFFER MITIGATION SITE

Monitoring Year 2 Report

## **TABLE OF CONTENTS**

| Section 1: PROJECT OVERVIEW           | 2 |
|---------------------------------------|---|
| 1.1 Project Summary                   | 2 |
| 1.2 Project Goals and Objectives      |   |
| 1.3 Monitoring Year 2 Data Assessment |   |
| 1.3.1 Vegetative Assessment           | 3 |
| 1.4 Monitoring Year 2 Summary         | 3 |
| Section 3: REFERENCES                 |   |
| APPENDICES                            |   |

| <b>APPENDICES</b> |                                                         |
|-------------------|---------------------------------------------------------|
| Appendix 1        | General Figures and Tables                              |
| Figure 1          | Project Vicinity Map                                    |
| Figure 2          | Service Area                                            |
| Figure 3          | Project Component / Asset Map                           |
| Table 1           | Project Components and Mitigation Credits               |
| Table 2           | Project Activity and Reporting History                  |
| Table 3           | Project Contact Table                                   |
| Table 4           | Project Information and Attributes                      |
| Table 5           | Adjacent Forested Areas Existing Tree and Shrub Species |
| Table 6           | Planted Tree Species                                    |
|                   |                                                         |
| Appendix 2        | Visual Assessment Data                                  |
| Figure 4          | Monitoring Plan View                                    |
| Table 7           | Vegetation Condition Assessment Table                   |
|                   | Vegetation Plot Photographs                             |
|                   |                                                         |
| Appendix 3        | Vegetation Plot Data                                    |
| Table 8           | Vegetation Plot Criteria Attainment Table               |
| Table 9           | CVS Vegetation Tables - Metadata                        |
| Table 10          | Planted and Total Stem Counts                           |
|                   |                                                         |
| Appendix 4        | Overview Photos                                         |

## Section 1: PROJECT OVERVIEW

## 1.1 Project Summary

Wildlands Engineering, Inc. (Wildlands) implemented a full delivery project at the Martin Dairy Mitigation Site ("Site") for the North Carolina Department of Environmental Quality Division of Mitigation Services (DMS) to restore a total of 2,135 linear feet (LF) of perennial streams in Orange County, NC. The Site included the restoration of two unnamed tributaries (Martin Dairy Creek and UT1). The project also restored 10.139 acres (441,654.84 ft²) of riparian buffer at the Site, which will provide 379,169.330 Riparian Buffer Credits. The project Site was planned, designed, and constructed on land surrounding Martin Dairy Creek and its tributaries. The Site is located approximately eight miles northeast of Hillsborough, NC and eight miles south of Caldwell, NC (Figure 1) in the Neuse River Basin 8-Digit Hydrologic Unit Code (HUC) 03020201. The project is located within a DMS targeted watershed for the Neuse River Basin Hydrologic Unit Code (HUC) 03020201030030 and NC Division of Water Resources (DWR) Subbasin 03-04-01. The Site drains to Buckwater Creek, which flows to Falls Lake, which is classified as water supply waters (WS-IV) and nutrient sensitive waters (NSW). The 11.155 acre site is protected with a permanent conservation easement.

The project has been planned, designed and constructed per the Martin Dairy Mitigation Plan (2017) and the Consolidated Buffer Mitigation Rule 15A NCAC 02B .0295 (effective November 1, 2015). The purpose of the riparian buffer restoration is to provide riparian buffer credits to compensate for buffer impacts within the Hydrologic Unit Code 03020201 and the Falls Lake Watershed. The service area for the Riparian Buffer Credits is depicted in Figure 2. The mitigation credits generated from this Site are listed in Table 1 and shown in Figure 3.

## 1.2 Project Goals and Objectives

Prior to construction activities, the primary degradation on the Site was the original clearing of the Site and channelization of Martin Dairy Creek and UT1. The channelization involved straightening and deepening of the stream (as indicated by the amount of dredge spoil in the floodplain). In the past livestock were grazed on the Site, which contributed to bank sloughing. Table 4 in Appendix 1 presents the pre-restoration conditions in more detail. The restored riparian buffer areas within the Site will aid in protecting water quality.

The main objective of the project was to reduce nitrogen and phosphorus loading to the Neuse River tributaries by establishing a forested riparian buffer on land previously used for agricultural purposes. The riparian buffer will immobilize nutrients, reducing quantities available to downstream aquatic ecosystems in the Neuse River Basin.

11.115 acres of land were protected with a conservation easement. Out of the 11.155 acres, 10.139 acres were restored for Neuse River buffer credit and 1.017 acres will not generate buffer mitigation credit. In general, riparian buffer restoration area widths on streams extend out to 200 feet from top of bank for Neuse River buffer credits. Maps detailing the credit generation are provided in Figure 3.

## 1.3 Monitoring Year 2 Data Assessment

The final mitigation plan was submitted and accepted by DMS in March 2017. Construction activities were completed by Land Mechanic Designs, Inc in July 2017. The planting was completed by Bruton Natural Systems, Inc. in December 2017. The baseline as-built survey for the stream mitigation work was completed by Turner Land Surveying in August 2017 and for the buffer mitigation component in January 2018. Monitoring Year 1 vegetation survey was completed September 2018. Refer to Appendix 1 for detailed project activity, history, contact information, and watershed/site background information.

Vegetative performance for buffer restoration areas will be in accordance with 15A NCAC 02B .0295(n)(2)(B), and (n)(4) (effective November 1, 2015). To meet success criteria, areas generating buffer mitigation credits shall include a minimum of four native hardwood tree species or four native hardwood tree and native shrub species, where no one species is greater than 50 percent of stems, and have a survival of 260 planted stems per acre at the end of the required monitoring period (MY5) (no interim success criteria required). In order for the monitoring to be terminated, DWR must provide a written approval of vegetation success of buffer restoration areas generating buffer credit. Annual monitoring was conducted to assess the condition of the vegetation in September 2019.

## 1.3.1 Vegetative Assessment

The quantity of monitoring vegetation plots was determined in accordance with the Carolina Vegetative Sampling Protocol (CVS Levels II) such that at least two (2) percent of the Site is encompassed in monitoring plots. A total of eight (8) vegetation plots (10 meters by 10 meters) were randomly established between the conservation easement boundaries and five feet from the top of stream banks. The plot corners have been marked and are recoverable either through field identification or with the use of a GPS unit. Reference photographs will be taken at the origin looking diagonally across the plot to the opposite corner on an annual basis. Species composition, density, and survival rates will be evaluated on an annual basis by plot and for the entire site. The extent of invasive species coverage will also be monitored and controlled as necessary.

The Monitoring Year 2 (MY2 of 5) vegetative survey was completed in September 2019. The 2019 annual vegetation monitoring resulted in an average survivability of 405 stems per acre, which is greater than the final requirement of 260 stems per acre, but approximately 32% less than the baseline density recorded (597 stems/acre) in January 2018. There was an average of 10 stems per plot compared to 14 stems per plot in MY0. Vegetation Plot 7 had an increased tree mortality rate from MY0 to MY2 due to herbaceous competition from Alligator Weed (*Alternanthera philoxeroides*). Vegetation Plot 7 is on track to meet the MY5 success criteria of 260 stems per acre but exceeds requirements by less than 10 percent with 283 planted stems per acre. Even with herbaceous competition, several volunteers were assessed in the plot including green ash (*Fraxinus pennsylvanica*) and buttonbush (*Cephalanthus occidentalis*), bringing the total stems per acre to 405, exceeding the success requirements by more than 10 percent. The Site is on track to meet its final success criteria. Please refer to Appendix 3 for vegetation plot criteria attainment data, CVS vegetation plot metadata, and vegetation summary tables and Appendix 2 for vegetation plot photographs, vegetation condition assessment table, and monitoring plan view.

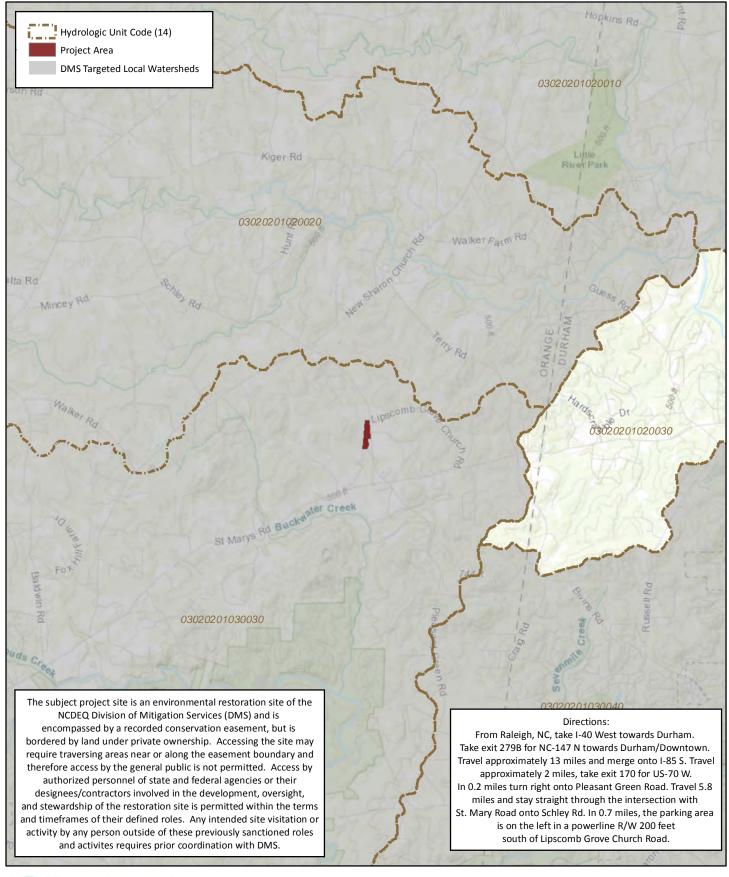
Tree vigor along UT1 was good but is not performing as well as the rest of the Site. This is likely due to floodplain grading during construction. Approximately 100 pounds of biochar, rock phosphate, azomite, and humic acid was added to the floodplain to promote tree growth during MY2. Remedial action will be taken as necessary in subsequent monitoring years to promote tree growth.

## 1.4 Monitoring Year 2 Summary

Overall, the Site has met the required vegetation success criteria for MY2. All the vegetation plots met the MY2 success criteria as seen in the monitoring components map. While tree mortality rate in Vegetation Plot 7 increased, it is still meeting the success criteria and with volunteers is on track to exceed the success criteria with 405 stems per acre. At this time no remedial actions are proposed.

Summary information/data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting

information formerly found in these reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices is available from DMS upon request.


## Section 2: METHODOLOGY

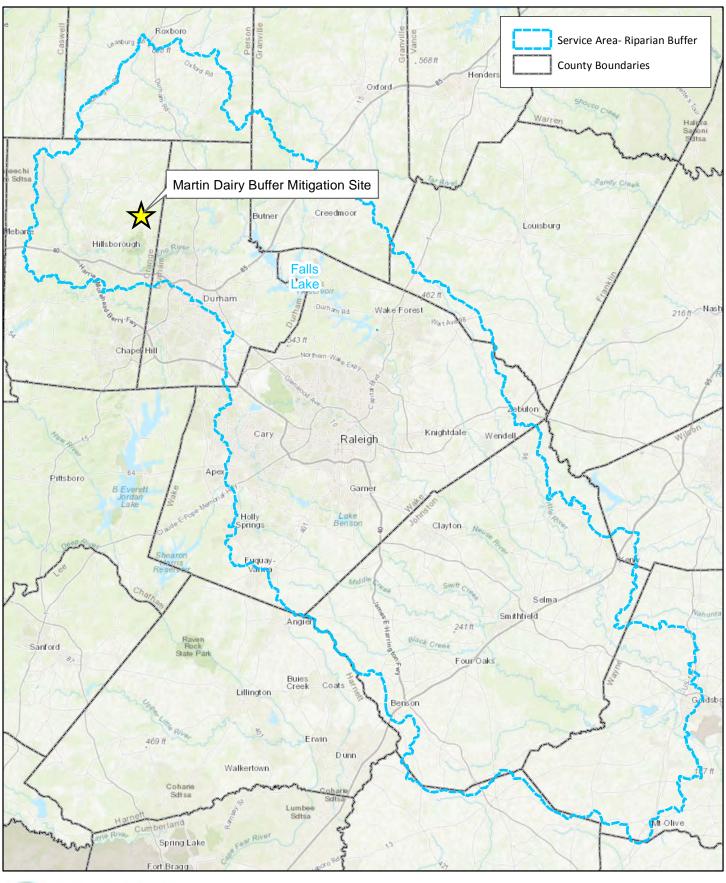
Planted woody vegetation was monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2006). A total of eight standard 10 meter by 10-meter vegetation plots were established within the project easement area.

## **Section 3: REFERENCES**

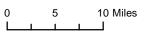
- Breeding, R. 2010. Neuse River Basin Restoration Priorities. North Carolina Ecosystem Enhancement Program.
- Guidelines for Riparian Buffer Restoration. NC Department of Environment and Natural Resources, Ecosystem Enhancement Program. October 2004.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2006. CVS-EEP Protocol for Recording Vegetation Version 4.0. Retrieved from <a href="http://www.nceep.net/business/monitoring/veg/datasheets.htm">http://www.nceep.net/business/monitoring/veg/datasheets.htm</a>.
- Peet, R.K., T.R. Wentworth and P.S. White. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63:262-274. http://cvs.bio.unc.edu/methods.htm
- Schafale, M.P. and Weakley, A.S. 1990. A Classification of the Natural Communities of North Carolina, Third Approximation.
- Wildlands Engineering (2017). Martin Dairy Mitigation Site. NCDWR, Raleigh NC. http://portal.ncdenr.org/web/wq/nutrientbufferbanks



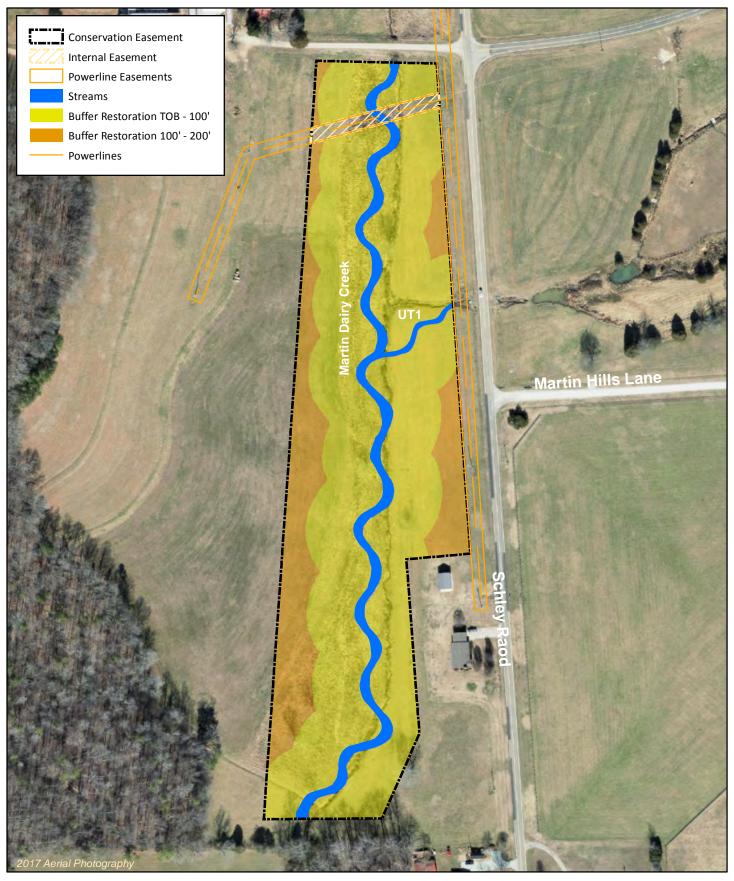








0 0.5 1 Miles




Figure 1. Project Vicinity Map Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019















0 100 200 Feet



Figure 3. Project Component / Asset Map Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019 Orange County, NC

#### **Table 1. Project Components and Mitigation Credits**

Martin Dairy Buffer Mitigation Site

DMS Project No. 97087

Monitoring Year 2 - 2019

| MITIGATION CREDITS                  |                           |                  |                        |                      |                                  |                                  |                  |                                |                                        |                                                      |                                |                                |
|-------------------------------------|---------------------------|------------------|------------------------|----------------------|----------------------------------|----------------------------------|------------------|--------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------|--------------------------------|
| Riparian Buffer (15A NCAC 02B.0295) |                           |                  |                        |                      |                                  |                                  |                  |                                | If Converted to<br>Nutrient Offset     |                                                      |                                |                                |
| Location                            | Jurisdictional<br>Streams | Restoration Type | Reach ID<br>/Component | Buffer Width<br>(ft) | Creditable Area<br>(square feet) | Initial<br>Credit<br>Ratio (x:1) | % Full<br>Credit | Final<br>Credit<br>Ratio (x:1) | Riparian<br>Buffer<br>Credits<br>(BMU) | Convertible<br>to Nutrient<br>Offset<br>(Yes or No*) | Nutrient<br>Offset: N<br>(lbs) | Nutrient<br>Offset: P<br>(lbs) |
| Rural                               | Subject                   | Restoration      | Martin Dairy           | 0-100                | 348,392.88                       | 1                                | 100%             | 1.00000                        | 348,392.88                             | No                                                   | 0.000                          | 0.000                          |
|                                     |                           |                  | Martin Dairy           | 101-200              | 93,261.96                        |                                  | 33%              | 3.00000                        | 30,776.45                              | No                                                   | 0.000                          | 0.000                          |
|                                     |                           |                  | SUBTO                  | OTALS                | 441,654.84                       |                                  |                  |                                | 379,169.33                             |                                                      | 0.000                          | 0.000                          |

<sup>\*</sup>Riparian buffer credits are not convertible to nutrient offset because the site was used for hay production and livestock have been removed.

#### Table 2. Project Activity and Reporting History

Martin Dairy Buffer Mitigation Site

DMS Project No. 97087

Monitoring Year 2 - 2019

**Date Collection Complete Completion or Scheduled Delivery Activity or Report** Conservation Easement N/A November 2016 Mitigation Plan March 2017 March 2017 N/A December 2017 Bare Root Planting As-Built & Baseline Monitoring Document January 2018 January 2018 Year 1 Monitoring September 2018 December 2018 Year 2 Monitoring September 2019 December 2019 Year 3 Monitoring 2020 December 2020 Year 4 Monitoring 2021 December 2021 Year 5 Monitoring 2022 December 2022

## Table 3. Project Contact Table

Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019

|                         | Wildlands Engineering, Inc.        |
|-------------------------|------------------------------------|
| Designer                | 312 West Millbrook Road, Suite 225 |
| Angela Allen, PE        | Raleigh, NC 27609                  |
|                         | 919.851.9986                       |
|                         | Bruton Natural Systems, Inc        |
| Planting Contractor     | P.O. Box 1197                      |
|                         | Fremont, NC 27830                  |
| Nursery Stock Suppliers | Dykes and Son Nursery              |
| Monitoring Performers   | Wildlands Engineering, Inc.        |
| Monitoring, POC         | Jason Lorch                        |
|                         | 919.851.9986, ext. 107             |

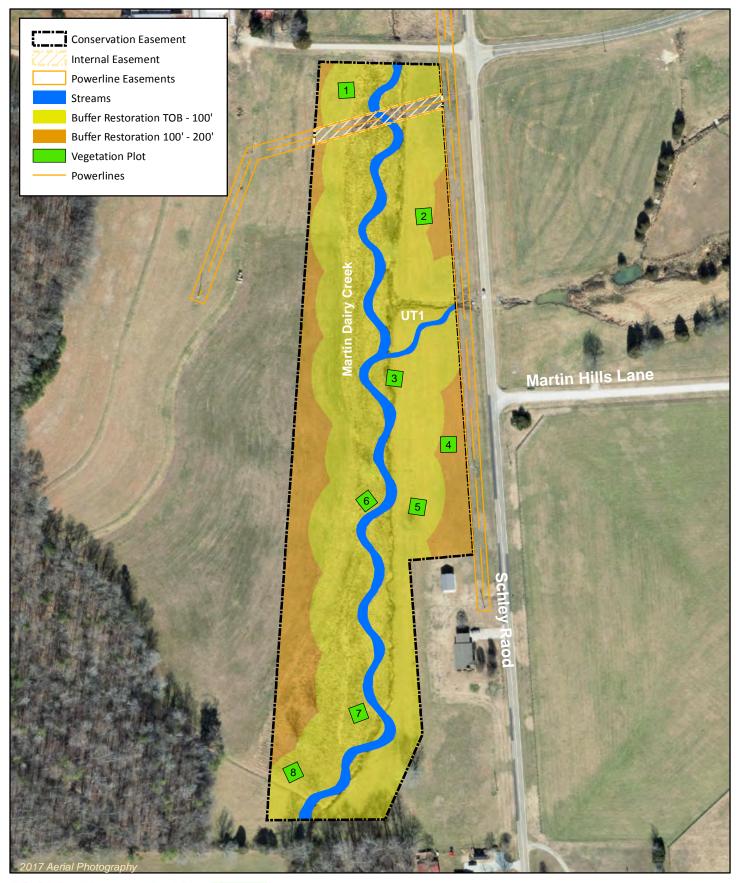
**Table 4. Project Information and Attributes**Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019

|                                               | PROJECT INFORMATION                                        |  |  |  |  |
|-----------------------------------------------|------------------------------------------------------------|--|--|--|--|
| Project Name                                  | Martin Dairy Buffer Mitigation Site                        |  |  |  |  |
| County                                        | Orange County                                              |  |  |  |  |
| Project Area (acres)                          | 11.155                                                     |  |  |  |  |
| Project Coordinates (latitude and longitude)  | 36° 7' 25.76"N 79° 0' 14.26"W                              |  |  |  |  |
| PROJECT WATERSHED SUMMARY INFORMATION         |                                                            |  |  |  |  |
| Physiographic Province                        | Carolina Slate Belt of the Piedmont Physiographic Province |  |  |  |  |
| River Basin                                   | Neuse                                                      |  |  |  |  |
| USGS Hydrologic Unit 8-digit                  | 03020201                                                   |  |  |  |  |
| USGS Hydrologic Unit 14-digit                 | 03020201030030                                             |  |  |  |  |
| DWR Sub-basin                                 | 03-04-01                                                   |  |  |  |  |
| Project Drainage Area (acres)                 | 526.0                                                      |  |  |  |  |
| Project Drainage Area Percentage of Imperviou | s 0.4%                                                     |  |  |  |  |
| CGIA Land Use Classification                  | 59.0% forested, 40.6% cultivated, 0.40% impervious         |  |  |  |  |

# Table 5. Adjacent Forested Areas Existing Tree and Shrub Species

Martin Dairy Buffer Mitigation Site DMS Project No. 97087

Monitoring Year 2 - 2019


| Common Name         | Common Name Scientific Name |       |  |  |  |
|---------------------|-----------------------------|-------|--|--|--|
| Red Maple           | Acer rubrum                 | FAC   |  |  |  |
| Water Hickory       | Carya aquatica              | OBL   |  |  |  |
| Sugarberry          | Celtis laevigata            | FACW  |  |  |  |
| Sweet Pepperbush    | Clethra alnifolia           | FACW  |  |  |  |
| Swamp Titi          | Cyrilla racemiflora         | FACW  |  |  |  |
| Persimmon           | Diospyros virginiana        | FAC   |  |  |  |
| Water Ash           | Fraxinus caroliniana        | OBL   |  |  |  |
| Deciduous Holly     | Ilex decidua                | FACW- |  |  |  |
| Virginia Sweetspire | Itea virginica              | FACW+ |  |  |  |
| Eastern Red Cedar   | Juniperus virginiana        | FACU- |  |  |  |
| Sweetgum            | Liquidambar styraciflua     | FAC+  |  |  |  |
| Yellow Poplar       | Liriodendron tulipifera     | FAC   |  |  |  |
| Water Tupelo        | Nyssa aquatica              | OBL   |  |  |  |
| Blackgum            | Nyssa sylvatica             | FAC   |  |  |  |
| Loblolly Pine       | Pinus taeda                 | FAC   |  |  |  |
| American Sycamore   | Platanus occidentalis       | FACW- |  |  |  |
| Willow Oak          | Quercus phellos             | FACW- |  |  |  |
| Red Oak             | Quercus rubra               | FACU  |  |  |  |
| Shumard Oak         | Quercus shumardii           | FACW- |  |  |  |
| Black Willow        | Salix nigra                 | OBL   |  |  |  |

**Table 6. Planted Tree Species** 

Martin Dairy Buffer Mitigation Site DMS Project No. 97087 **Monitoring Year 2 - 2019** 

| Common Name       | Scientific Name         | Number Planted | % of Total |
|-------------------|-------------------------|----------------|------------|
| River Birch       | Betula nigra            | 926            | 16%        |
| Eastern Redbud    | Cercis canadensis       | 58             | 1%         |
| Flowering Dogwood | Comus florida           | 58             | 1%         |
| Green Ash         | Fraxinus pennsylvanica  | 1,042          | 18%        |
| Tulip Poplar      | Liriodendron tulipifera | 926            | 16%        |
| Sycamore          | Platanus occidentalis   | 1,274          | 22%        |
| Pin Oak           | Quercus palustris       | 811            | 14%        |
| Willow Oak        | Quercus phellos         | 695            | 12%        |
| Total             |                         | 5,790          | 100%       |









0 100 200 Feet



Figure 4. Monitoring Plan View Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 2 - 2019

# **Table 7. Vegetation Condition Assessment Table**

Martin Dairy Buffer Mitigation Site DMS Project No. 97087

Monitoring Year 2 - 2019

**Planted Acreage** 

10.139

| Tidifica Acreage                    | 10.133                                                                                                                         |                              |                    |                     |                         |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|---------------------|-------------------------|--|
| Vegetation Category                 | Definitions                                                                                                                    | Mapping<br>Threshold<br>(Ac) | Number of Polygons | Combined<br>Acreage | % of Planted<br>Acreage |  |
| Bare Areas                          | ery limited cover of both woody and herbaceous material 0.1 0 0                                                                |                              |                    |                     |                         |  |
| Low Stem Density Areas              | Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.                                    | 0.1                          | 0                  | 0                   | 0%                      |  |
|                                     |                                                                                                                                | Total                        | 0                  | 0                   | 0%                      |  |
| Areas of Poor Growth Rates or Vigor | reas of Poor Growth Rates or Vigor  Areas with woody stems of a size class that are obviously small given the monitoring year. |                              | 0                  | 0                   | 0%                      |  |
|                                     | Curr                                                                                                                           | nulative Total               | 0                  | 0.0                 | 0%                      |  |

**Easement Acreage** 

11.155

| Vegetation Category         | Definitions                                                        | Number of Polygons | Combined<br>Acreage | % of<br>Easement<br>Acreage |    |
|-----------------------------|--------------------------------------------------------------------|--------------------|---------------------|-----------------------------|----|
| Invasive Areas of Concern   | Areas of points (if too small to render as polygons at map scale). | 1,000              | 0                   | 0                           | 0% |
|                             |                                                                    |                    |                     |                             |    |
| Easement Encroachment Areas | Areas of points (if too small to render as polygons at map scale). | none               | 0                   | 0                           | 0% |









**Table 8. Vegetation Plot Criteria Attainment Table** 

Martin Dairy Buffer Mitigation Site DMS Project No. 97087

Monitoring Year 2 - 2019

| Plot  | Met Success Criteria | Tract Mean |
|-------|----------------------|------------|
| 1     | Yes                  |            |
| 2     | Yes                  |            |
| 3     | Yes                  |            |
| 4 Yes |                      | 100%       |
| 5     | Yes                  | 100%       |
| 6     | Yes                  |            |
| 7     | Yes                  |            |
| 8     | Yes                  |            |

## Table 9 CVS Vegetation Tables - Metadata

Martin Dairy Buffer Mitigation Project DMS Project No.97087

Monitoring Year 2 - 2019

| Report Prepared By                                                                                   | Jason Lorch                                                                                                                                               |  |  |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Date Prepared                                                                                        | 9/20/2019 14:12                                                                                                                                           |  |  |  |
| Database Name                                                                                        | Martin Dairy- cvs-v2.5.0 MY2.mdb                                                                                                                          |  |  |  |
| Database Location                                                                                    | F:\Projects\005-02158 Martin Dairy\Monitoring\Monitoring Year 2\Vegetation Assessment                                                                     |  |  |  |
| Computer Name                                                                                        | CARLYNN-PC                                                                                                                                                |  |  |  |
| File Size                                                                                            | 51679232                                                                                                                                                  |  |  |  |
| DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT                                                           |                                                                                                                                                           |  |  |  |
| Metadata                                                                                             | Description of database file, the report worksheets, and a summary of project(s) and project data.                                                        |  |  |  |
| Project Planted                                                                                      | Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.                                                         |  |  |  |
| Project Total Stems                                                                                  | Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.       |  |  |  |
| Plots List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.). |                                                                                                                                                           |  |  |  |
| Vigor Frequency distribution of vigor classes for stems for all plots.                               |                                                                                                                                                           |  |  |  |
| Vigor by Spp                                                                                         | Frequency distribution of vigor classes listed by species.                                                                                                |  |  |  |
| Damage                                                                                               | List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.                                              |  |  |  |
| Damage by Spp                                                                                        | Damage values tallied by type for each species.                                                                                                           |  |  |  |
| Damage by Plot                                                                                       | Damage values tallied by type for each plot.                                                                                                              |  |  |  |
| Planted Stems by Plot and Spp                                                                        | A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.                                         |  |  |  |
| ALL Stems by Plot and Spp                                                                            | A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded. |  |  |  |
| PROJECT SUMMARY                                                                                      |                                                                                                                                                           |  |  |  |
| Project Code                                                                                         | 97087                                                                                                                                                     |  |  |  |
| Project Name                                                                                         | Martin Dairy                                                                                                                                              |  |  |  |
| Description                                                                                          | Stream Restoration Project                                                                                                                                |  |  |  |
| Sampled Plots                                                                                        | 8                                                                                                                                                         |  |  |  |

**Table 10. Planted and Total Stem Counts** 

Martin Dairy Buffer Mitigation Site

DMS Project No. 97087

Monitoring Year 2 - 2019

|                           |                   |                | Current Plot Data (MY2 2019) |       |      |       |       |     |       |       |     |       |       |     |       |       |    |
|---------------------------|-------------------|----------------|------------------------------|-------|------|-------|-------|-----|-------|-------|-----|-------|-------|-----|-------|-------|----|
|                           |                   |                |                              | VP 1  |      |       | VP 2  |     |       | VP 3  |     |       | VP 4  |     | VP 5  |       |    |
| Scientific Name           | Common Name       | Species Type   | PnoLS                        | P-all | Т    | PnoLS | P-all | Т   | PnoLS | P-all | Т   | PnoLS | P-all | T   | PnoLS | P-all | Т  |
| Betula nigra              | River Birch       | Tree           | 1                            | 1     | 1    | 2     | 2     | 2   | 3     | 3     | 3   | 1     | 1     | 1   | 3     | 3     | 3  |
| Cephalanthus occidentalis | Buttonbush        | Shrub Tree     |                              |       |      |       |       |     |       |       |     |       |       |     |       |       |    |
| Cercis canadensis         | Red Bud           | Shrub Tree     |                              |       |      |       |       |     |       |       |     |       |       |     |       |       |    |
| Cornus florida            | Flowering Dogwood | Shrub Tree     |                              |       |      |       |       |     |       |       |     |       |       |     |       |       |    |
| Fraxinus pennsylvanica    | Green Ash         | Tree           | 2                            | 2     | 2    | 3     | 3     | 3   | 2     | 2     | 2   | 3     | 3     | 3   | 1     | 1     | 1  |
| Liquidambar styraciflua   | Sweet Gum         | Tree           |                              |       |      |       |       |     |       |       | 4   |       |       | 1   |       |       |    |
| Liriodendron tulipifera   | Tulip Poplar      | Tree           | 3                            | 3     | 3    |       |       |     |       |       |     | 1     | 1     | 1   |       |       |    |
| Platanus occidentalis     | Sycamore          | Tree           | 2                            | 2     | 2    | 2     | 2     | 2   | 2     | 2     | 2   | 2     | 2     | 2   | 4     | 4     | 4  |
| Pyrus calleryana          | Bradford Pear     | Tree           |                              |       | 1    |       |       |     |       |       |     |       |       |     |       |       | 2  |
| Quercus palustris         | Pin Oak           | Tree           |                              |       |      | 2     | 2     | 2   | 2     | 2     | 2   | 3     | 3     | 3   |       |       |    |
| Quercus phellos           | Willow Oak        | Tree           | 3                            | 3     | 3    | 2     | 2     | 2   | 1     | 1     | 1   | 2     | 2     | 2   | 2     | 2     | 2  |
| Ulmus                     | Elm               | Tree           |                              |       |      |       |       |     |       |       |     |       |       | 1   |       |       |    |
|                           |                   | Stem count     | 11                           | 11    | 11   | 11    | 11    | 11  | 10    | 10    | 14  | 12    | 12    | 14  | 10    | 10    | 10 |
| size (ares)               |                   |                | 1                            |       | 1    |       | 1     |     |       | 1     |     |       | 1     |     |       |       |    |
|                           |                   | size (ACRES)   | 0.02                         |       | 0.02 |       | 0.02  |     | 0.02  |       |     | 0.02  |       |     |       |       |    |
|                           |                   | Species count  | 5                            | 5     | 5    | 5     | 5     | 5   | 5     | 5     | 6   | 6     | 6     | 8   | 4     | 4     | 4  |
|                           |                   | Stems per ACRE | 445 445 445 445              |       | 445  | 445   | 445   | 405 | 405   | 567   | 486 | 486   | 567   | 405 | 405   | 405   |    |

## **Color for Density**

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteers

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

T: Total Stems

**Table 10. Planted and Total Stem Counts** 

Martin Dairy Buffer Mitigation Site

DMS Project No. 97087

Monitoring Year 2 - 2019

Current Plot Data (MY2 2019) **Annual Means** VP 6 VP 7 VP8 MY2 (2019) MY1 (2018) MY0 (2018) **Scientific Name** P-all P-all PnoLS P-all **PnoLS** P-all PnoLS P-all Common Name Species Type **PnoLS** Т PnoLS P-all Т **PnoLS** Т Т Т Т Betula nigra River Birch Tree Cephalanthus occidentalis Buttonbush Shrub Tree Shrub Tree Cercis canadensis Red Bud Cornus florida Shrub Tree Flowering Dogwood Fraxinus pennsylvanica Green Ash Tree iquidambar styraciflua Sweet Gum Tree Liriodendron tulipifera Tulip Poplar Tree Platanus occidentalis Tree Sycamore Pyrus calleryana **Bradford Pear** Tree Quercus palustris Pin Oak Tree Quercus phellos Willow Oak Tree Ulmus Elm Tree Stem count size (ares) 0.02 0.20 0.20 size (ACRES) 0.02 0.02 0.20 **Species count** Stems per ACRE 

### **Color for Density**

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteers

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

T: Total Stems









